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ABSTRACT
In anycast deployments, knowing how traffic will be distributed

among the locations is challenging. In this paper, we propose a

technique for partitioning the Internet using passive measurements

of existing anycast deployments such that all IP addresses within a

partition are routed to the same location for an arbitrary anycast

deployment. One IP address per partition may then represent the

entire partition in subsequent measurements of specific anycast de-

ployments. We implement a practical version of our technique and

apply it to production traffic from an anycast authoritative DNS ser-

vice of a major CDN and demonstrate that the resulting partitions

have low error even up to 2 weeks after they are generated.

CCS CONCEPTS
•Networks→Networkmeasurement;Routing protocols;Net-
work dynamics;

KEYWORDS
Anycast, Measurement

1 INTRODUCTION
Anycast is a popular [7, 17, 24] technique for distributing traffic

among multiple physical locations, also known as points of pres-

ence, or PoPs, on the Internet. IP Anycast is frequently used to

provide authoritative and recursive DNS services (e.g., [1, 18, 25]),

as well as by content delivery networks (CDNs) (e.g., [9, 16, 22]).

By advertising, via BGP [26], the same IP prefix from each PoP,

traffic from any source on the Internet is routed to one of the PoPs

according to properties of the path between the source and the

PoPs. Routers along that path select between multiple competing

routes to the anycast prefix according to a combination of best

practices and unique policies enacted by individual autonomous

systems (ASs).

Knowing how traffic will be distributed among the PoPs adver-

tising an anycast prefix a priori is a challenging problem due to

incomplete knowledge of AS relationships and the varying policies

implemented by ASs, which can be complex [6]. As a direct result,

there is a great deal of operational complexity in monitoring and

modifying the advertisements of production anycast services [2].

Operators tune advertisements to both improve performance by

routing sources to a nearby PoP and balance load by shifting traffic

away from overloaded PoPs. Without the ability to predict to which

PoP sources will be routed, advertisement changes are often made

without complete knowledge of their impact.

Recently, Verfploeter [12] is proposed as a powerful method to

measure how traffic will be split among PoPs of an anycast service

before it receives production traffic. By active scanning with ICMP

Echo Requests from the anycast IP address to target IP addresses

on the Internet, Verfploeter identifies which PoP will receive traffic

from each target by where the Echo Reply is returned. Techniques

for scanning the entire IPv4 Internet exist [13], however are likely

to produce incomplete results because many hosts do not respond

to ICMP [19]. Further, scanning all of IPv4-space is onerous and

does not scale well to many parties conducting their own scans,

and – looking forward – full scans of IPv6-space are impractical.

The authors of [12] propose scanning one IP address per /24 prefix

on the Internet chosen to be representative of the entire /24 prefix,

leveraging work in [15]. This method, however, will result in (i)
excess scanning when prefixes less specific than 24-bits are all

routed to the same PoP and (ii) inaccurate representation when IP

addresses within the same /24 prefix are routed to different PoPs,

which we demonstrate occurs in Section 4.

In this paper, we propose a novel technique using passive mea-

surements of existing anycast deployments that splits IP-space into

consistently routed partitions, i.e., all IP addresses within a partition

are routed to the same PoP for an arbitrary anycast deployment.

Then, one IP address per partition may be selected and used in ac-

tive measurements such as [12] to represent all IP addresses within

the partition. We make the following contributions:

• Propose a theoretical approach using deployed anycast services

for creating a partitioning of the Internet along differences in

routing to anycast PoPs.

• Present a practical implementation of the approach that solves

real-world problems with production anycast data. We validate

and measure the error in the resulting partitions, showing it’s

effectiveness at predicting which PoP anycast traffic will be

routed to over time and across anycast deployments.

We use the following terminology in the paper. All IP addresses

routed to the same PoP for a given anycast prefix are in the same

catchment. The set of PoPs and policies used to advertise a given

anycast prefix are an anycast deployment. The PoP that a given IP

address is routed to on an anycast prefix is the sink.

2 THEORETICAL APPROACH
Anycast deployments split the Internet into the catchments for

each PoP in the deployment. The catchments are a function of the

deployment itself and routing on the Internet. Our general idea is to

combine the catchment information from multiple anycast deploy-

ments to learn about the underlying Internet topology and routing

policies that form catchments independently of the anycast deploy-

ments themselves. By combining the catchment information from

enough anycast deployments, we create a mapping of IP addresses

into partitions where the IP addresses within a partition are always

part of the same catchment regardless of anycast deployment.

First, consider a simple deployment of a single anycast prefix

a1 advertised from two PoPs, l1 and l2. We use two PoPs for ease

of exposition, but the method generalizes to any number of PoPs.

Logically, the Internet is split into the catchment for sink l1 and the
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catchment for sink l2, defined as Pa1→l1 and Pa1→l2 , respectively.

Note that the two catchments need not be composed of contiguous

IP-space. Thus, Pai→li in general represents a set of prefixes.

Next, take a second anycast prefix a2 again advertised from two

topologically different PoPs, l3 and l4. Again, the Internet is split
in two: Pa2→l3 and Pa2→l4 . Together, a1 and a2 split the Internet
into 4 possible partitions: Pa1→l1,a2→l3 , Pa1→l2,a2→l3 , Pa1→l1,a2→l4 ,

and Pa1→l2,a2→l4 . Any partitions that are empty can trivially be

ignored.

Using n anycast deployments, a1,a2,a3, ...,an , the Internet is

split into up to 2
n
non-empty partitions. As n → ∞, the number

of partitions is bounded by the number of IP addresses on the

Internet. Practically, however, we expect the number of partitions

to be far less as many hosts on the Internet will be routed to the

same sink due to the hosts residing in the same network and their

traffic traversing the same paths. We call the discovered partitions

consistently routed because all IP addresses within the partition are

always routed to the same PoP regardless of anycast deployment.

The catchment of any IP address within a partition is representa-

tive of all IPs in the partition. Thus, one IP address may be selected

from within each partition and used in subsequent measurements

with the understanding that the observed routing of the selected IP

address applies to the entire partition.

Note that many types of network routing changes caused by

traffic engineering will not perturb the mapping of IP addresses to

partitions. For example, an AS re-routing traffic from one path to

another does not invalidate the mapping because all IP addresses

within any partition should still be routed to the same sink. Con-
versely, if the AS begins splitting traffic among multiple paths, then

a partition may incorrectly include IP addresses routed to different

sinks.

3 IMPLEMENTATION
In this section, we describe amethod to generate the partitions using

real world data from a production system and discuss algorithmic

adjustments to the theory needed to address real world problems.

3.1 Dataset
To create the partitions as described in Section 2, we use logs cap-

tured from an anycast authoritative DNS service of a major content

delivery network (CDN). The service has 22 IPv4 anycast prefixes,

each used for authoritative hosting of a wide variety of DNS zones

and advertised from many, globally distributed PoPs. The PoPs ad-

vertising different anycast prefixes are typically distinct, but in some

cases overlap. Each PoP has on average dozens of BGP peers making

the 22 anycast deployments examples of “many-provider” configu-

rations [23]. Logs from the authoritative nameservers within the

PoPs include the source IP address and the destination IP address—

which is from one of the 22 anycast prefixes—of the DNS queries.

From the nameserver that logs the query, we can infer the sink PoP

of the source IP address for the anycast prefix. We use these DNS

traffic logs to create the partitions, but note that the partitions could

be generated from logs for any type of anycast traffic, including

web access. We collect 5 days of logs and summarize the data in

Table1 as datasets D0 through D∗. Further, the DI Pv6 dataset is

collected from logs of the 22 IPv6 anycast prefixes used by the same

Name Date Queries Source IPs /24 Prefixes ASNs Countries
D0 2019-02-07 129B 5.1M 1.5M 44K 240

D
1d 2019-02-08 139B 5.0M 1.5M 41K 243

D1w 2019-02-14 158B 5.5M 1.6M 42K 243

D2w 2019-02-21 168B 5.4M 1.6M 44K 240

D∗ 2018-06-14 138B 5.8M 1.6M 47K 238

R 2019-02-21 2.26B 385K 107K 2952 84

DI Pv6
2020-03-24 17.4B 236K (/64) 104K (/48) 6839 171

Table 1: Datasets used in this paper

anycast authoritative DNS service (discussed in Section 4.4), and

the R dataset is collected from an anycast recursive resolver service

(discussed in Section 4.5).

Since our theoretical approach expects data from all IP addresses

on the Internet, we attempt to estimate how complete our datasets

are. In addition to the number of DNS queries in each dataset and

the number of source IP addresses, we compute the number of /24

prefixes that the source IP addresses are within, use Team Cymru

[29] to determine the ASN, and use the commercially available

geolocation service EdgeScape [14] to determine the country code

of each source IP address in our datasets. D0 through D∗ all have
similar properties. First, in terms of IP addresses, our datasets cover

roughly 0.1% of the approximately 3.7B total IPv4 addresses ex-

cluding reserved space [21] and 0.5% of the 1.1B IPv4 addresses

estimated to be in use as of 2014 [32]. Clearly, our datasets are

not exhaustive. However, the number of active /24 prefixes on the

Internet is estimated as 4.8M in 2013 [10] and 6.3M in 2014 [32]

via passive measurement, and 5.3M in 2017 [4] via active scanning,

of which our datasets cover between 24% and 31%. The number of

active /24 prefixes is likely higher today, but we could not find a

more recent census. Further, 65K ASNs appear in routing tables [5]

and our datasets cover 63-72% of that number. Finally, EdgeScape

recognizes 248 country codes of which 96-98% are covered in our

datasets. Thus, we conclude that, while our datasets do not include

all IP addresses, the coverage of our datasets is sufficient to produce

interesting and meaningful results, yet with some error. We attempt

to quantify the error in Section 4.2.

3.2 Algorithm
In this section, we describe a practical method of generating the

anycast partitions. The input to our algorithm is the total hits (DNS

queries) arriving at each PoP from each IP address to each anycast

prefix over a 24 hour period. We use a time window of one day

to avoid missing parts of the world due to diurnal usage patterns.

Further, we show in Section 4.2 that 24 hours is sufficient to predict

the catchments observed in the subsequent day with low error. The

algorithm involves three steps.

Step 1. First, dealing with each anycast deployment individually,

we find max-prefixes, the least-specific prefixes covering source IP

addresses all routed to the same sink. The intuition for this step

is that IP addresses not observed in the dataset are likely routed

to the same sink as observed IP addresses within the same max-

prefix. Using a greedy approach, the algorithm loops through each

source IP address r in turn and, using r as a root, finds the covering
prefix of r where (i) all covered IP addresses are routed to the same

sink, (ii) none of the covered IP addresses are already covered by a
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different max-prefix, and (iii) the covering prefix cannot be further

expanded without violating (i) or (ii).
However, requiring that all IP addresses are routed to the same

sink can be too strict. In the D0 dataset, we observe that 890K (17%)

IP addresses are routed to multiple PoPs for the same anycast prefix

over the 24 hour period, i.e., change catchment during the day.

There are many possible causes for this observation, some long

time scale and some short, including:

• Rare route instability [20, 30, 31] produces frequent changes

between multiple paths.

• Maintenance events both in the PoPs and in networks along the

path can cause all traffic routed to one PoP to shift to another

for time periods ranging from minutes to hours.

• The DNS queries from (predominantly) recursive resolvers

nearly always use an ephemeral UDP port number for each

query [27]. Thus, traffic engineering techniques that hash the

port numbers (e.g., equal-cost multi-path) may spread traffic

from a single IP address among multiple PoPs on a packet-by-

packet basis.

• Other traffic engineering that causes traffic to shift between

routes at specific times, e.g., due to traffic volume increases

during peak times.

We make no attempt to distinguish between these causes of rout-

ing changes, noting that all sources of routing changes are to be

expected in production systems. Practical implementations of our

methodology must contend with routing changes and we design

our algorithm to explicitly take them into account as follows.

Algorithm 1 shows a refined step 1 to deal with route changes. In-

stead of looking for covering prefixes where all covered IP addresses

are routed to a single PoP, we relax the constraint by looking for

covering prefixes where all covered IP addresses are routed to the

same set of PoPs over the day. Thus, if the root switches sink from

A to B during the 24-hours, we look for other IP address that have

also switched between the same two sinks during the day.

Further, we observe that many IP addresses send few queries

throughout the day, 44% of IP addresses in the D0 dataset sent less

than 10 DNS queries to at least one anycast prefix. We cannot be

confident that we observe all routing changes that impacted these

IP addresses throughout the 24-hour period. Thus, we may only

have samples in our dataset from when the IP addresses were in

the catchment of A or B and not both. To handle low sampling, the

algorithm iterates through IP addresses in order of descending total

hits to build covering prefixes based upon roots where we have

higher confidence in our observations due to abundant samples.

Next, the covering prefix is expanded to cover IP addresses if the

set of PoPs that they are routed to intersects with the set of PoPs

to which the root is routed. Finally, we add a threshold minimum

number of hits within a covering prefix and keep expanding the

covering prefix if below the threshold to limit the generation of

small max-prefixes that represent very few samples. Empirically,

we find a low threshold value of approximately 10 is sufficient and

produces reasonable results.

Step 2. Next, the algorithm merges the max-prefixes for each

anycast deployment together to form consistently routed prefixes. If

there is a conflict between the max-prefixes (i.e., one max-prefix is a

Algorithm 1: Step 1. Find the least-specific prefixes cov-

ering IP addresses all routed to the same sink(s)

Input: S ← list of all IPs

Input: h[s,p] ← # of hits from IP s to PoP p
Input: T← a threshold value

1 covered[s] ← false for s in S

2 for root in S ordered by hits desc do
3 if covered[root] then
4 continue

5 max-prefix← root

6 Pr ← set p where h[root,p] > 0

7 for rcover ← 31 to 1 bit prefix of root do
8 Sr ← set s in S covered by rcover
9 if covered[s] for any s in Sr then
10 break

11 t ←
∑
h[s,p] for s in Sr

12 if t ≥ T & h[s,p] > 0 for p not in Pr & s in Sr then
13 break

14 covered[s] ← true for s in Sr
15 max-prefix← rcover

16 yield max-prefix

subnet of another), the more-specific one wins. For example, in the

scenario where 1.2.3.0/24 and 1.2.3.0/26 both appear in the merger,

1.2.3.0/24 is split into 1.2.3.0/26, 1.2.3.64/26, and 1.2.3.128/25. After

this step, the remaining prefixes, consistent-prefixes, each contain IP

addresses that are consistently routed, with some introduced error.

Step 3. The consistent-prefixes are collected to form partitions

by matching the sinks of the consistent-prefixes across all any-

cast deployments. Using the above example again, 1.2.3.64/26 and

1.2.3.128/25 become part of the same partition.

4 ANALYSIS
The partitioning created from theD0 dataset contains 484K consistent-

prefixes. Figure 1 shows their lengths. The most common prefix

length is 22-bits but, surprisingly, there are many more specific than

24-bits including nearly 12K /32 prefixes, i.e., individual IP addresses

that are routed differently than the IP addresses numerically next to

them. Some of these IP addresses are operated by our institution and

we are able to manually verify their routing behavior. We confirm

that the hosts in the entire covering /24 prefix are routed via one of

two peering links depending upon the value of the most specific bit

in the IP address, generating many /32 consistent-prefixes. Thus,

every other IP address in the /24 prefix is routed identically and

the /32 consistent-prefixes readily merge into partitions in the final

step of our algorithm. In total, 245K (4.8%) of the IP addresses in the

D0 dataset are covered by consistent-prefixes that are more specific

than 24-bits, structure that would be lost if a single IP address is

used as representative of the entire /24 prefix, as in [12].

The 484K consistent-prefixes collect into 212K partitions in the

final step of our algorithm. We explore the consistency of the parti-

tions by computing the number of ASNs each partition covers and

find that 94% of partitions consist of IPs from a single ASN, and
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Figure 2: Number of consistent-prefixes for different ran-
dom permutations of the 22 anycast deployments used

98% consist of no more than two ASNs. We expect different ASNs

would produce different routing and this result agrees with that

intuition. Conversely, the IP-space of 37% of the 44K ASNs in D0 is

split across multiple partitions, higher than observed in [12] likely

due to the larger number of PoPs in our study. This result is also

expected as it is common for ASNs to have multiple peering links

as in the /32 prefix example above.

4.1 Is 22 Anycast Prefixes Enough?
In Section 2, we propose the use of a potentially infinite number of

anycast deployments to generate the partitions. Practically, how-

ever, the number of anycast deployments used is finite and we have

data available from 22. To answer whether 22 anycast deployments

is sufficient to produce partitions with the desired properties, we

generate partitionings with subsets of the 22 anycast deployments

where the set size varies from 1 to 21 anycast deployments. Figure 2

shows the number of consistent-prefixes found as a function of the

number of anycast deployments used. Each line (20 total) is a differ-

ent random permutation of the 22 anycast deployments. We expect

the slope of the curve to approach zero as the number of anycast

deployments becomes sufficient to discover all consistent-prefixes.

However, the curves clearly still have a positive slope approaching

22 deployments. Thus, 22 anycast deployments is insufficient to

discover all consistent-prefixes and the partitioning is incomplete.

The next sections quantify the resulting error.
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Figure 3: Cross validation of partitions where one anycast
deployment is left out at a time

4.2 Estimating Error in Partitions
The method of generating the partitions in the presence of routing

changes described in Section 3 introduces some error. However,

measuring that error is not straightforward. Recall that the parti-

tions indicate that all IP addresses should be consistently routed,

not to which sink they are routed. Therefore, we compute error as

follows. For each partition, first calculate the most frequent sink (or

sinks in the presence of routing changes) in terms of DNS queries.

Any IP addresses in the partition routed to a different sink add error.

In terms of IP addresses, the fraction error is the sum of the number

of erroneous IP addresses across partitions divided by the total IP

addresses. However, since the volume of DNS queries per IP ad-

dress is skewed, we also calculate error in terms of DNS queries by

summing the erroneous DNS queries across partitions and dividing

by the total hits in the dataset. In the D0 dataset, the error is 0.15%

in IP addresses and 0.03% in DNS queries, showing that the method

for dealing with routing changes adds a small amount of error.

The finite number of anycast deployments and the lack of traffic

from all IP addresses are also sources of error. Next, we perform

cross validation to estimate the predictive capability of the par-

titions on IP addresses and anycast deployments not part of the

training data. Note that 34% of the IP addresses in the D0 dataset

only ever sent DNS queries to a single anycast deployment. We

perform cross validation by withholding data for one anycast de-

ployment at a time, generating partitions using the remaining 21

anycast deployments, and then calculate error on the withheld data.

The resulting errors per anycast deployment left out are shown in

Figure 3. The maximum error is 1.29% in IP addresses and 0.53% in

DNS queries, while the average error is 0.36% in IP addresses and

0.12% in DNS queries. The error remains low despite the introduc-

tion of IP addresses and anycast deployments not in the training

data and the variation in the error indicates that some anycast

deployments include more distinct catchment information than

others, likely due to varied application use and the peers present at

the deployments PoPs.

To be useful for many applications, the partitions generated at

time t must still be able to accurately predict behavior at time t +∆.
We investigate the error in the partitions over time by using other

datasets in Table 1. Figure 4 shows the error for values of ∆ from

1 day (1d) to 8 months (8m) where the partitions are generated
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Figure 4: Error in the partitions over time

from the D0 dataset and then applied to future datasets. Note that

8 months is included as an extreme example and is exceptional in

that the partitions are generated using the D∗ dataset and applied

to the D1w dataset. The bars labeled IP addresses and DNS queries
correspond to our two measures of error above. We introduce two

new measures of error in IP addresses′ and DNS queries′ where the
IP addresses over which the error is calculated are restricted to only

those in the dataset used to compute error but not in the dataset used

to generate the partitions, and thus anticipated to be more prone

to error. The error after 8 months is predictably large, suggesting

that the partitions should be recomputed over time. However, at

a 2 week ∆ – which we believe to be a reasonable lifespan – the

error by all metrics remains below 1% despite only 56% of the IP

addresses in the D2w dataset are present in the D0 dataset and 28%

of the ones present are routed to different sinks. Thus, the routing

policies driving consistent routing in our partitioning are relatively

stable over at least two weeks even though source IP addresses and

the sinks of consistent-prefixes are themselves unstable.

4.3 Alternative Methods
Here, we compare the above error rates to those computed using

alternative methods. We compare our method using a 1 week ∆ to

two alternative methods: (i) split the dataset into /24 prefixes as in

[12] and (ii) use the prefixes visible in BGP route tables obtained

via Team Cymru [29]. The latter uses the reachability information

advertised by other ASNs to split up the IP addresses in the dataset

accordingly. To compare the methods, we must consider both error

rate and number of partitions as there is a trivial, and useless,

solution when the Internet is split into /32 prefixes. Such a solution

has zero error but both increases the number of IP addresses (and

measurements) needed to represent the Internet and cannot predict

the routing of any unresponsive IP addresses.

Table 2 in the first three rows shows the methods in order of

descending number of partitions. The “/24 Prefixes” method pro-

duces low error but at the cost of a very large number of partitions.

Contributing to the error is the observation above that 4.8% of IP

addresses are not part of the same catchment as other IP addresses

in their /24 prefix. The “BGP Prefixes” method creates fewer par-

titions but the error is very large. This is expected as route tables

contain routes to an IP address whereas our goal is to estimate

routing from the IP address and routing need not be symmetric. In

Method # Partitions Error (IPs) Error (Queries)
IPv4 /24 Prefixes 1.55M 0.77% 0.44%

BGP Prefixes 229K 5.46% 6.70%

Anycast Partitions 212K 0.13% 0.04%

IPv6 /48 Prefixes 104K 0.41% 7.01%

Anycast Partitions 42.0K 0.39% 0.05%

BGP Prefixes 13.4K 7.45% 10.13%

Table 2: Comparison with alternative methods

all, 17.1K (7.5%) of the 229K prefixes in BGP tables are split between

multiple catchments, showing that IP addresses within BGP route

prefixes are frequently not similarly routed. Of the three methods,

the anycast partitioning generates both the fewest partitions and

the lowest error.

4.4 IPv6
Our analysis has focused exclusively on IPv4. However, our method-

ology is equally applicable to IPv6. We investigate IPv6 using the

DI Pv6 dataset, which is much smaller than the other datasets cap-

tured from the authoritative DNS service due to limited IPv6 support

in recursive resolvers. Running the partitioning algorithm on this

dataset produces 42K consistent-prefixes and 19K partitions. Table 2

in the bottom three rows compares the anycast partitioning method

to splitting the dataset by /48 prefixes and prefixes in BGP route

tables as described above. For IPv6, anycast partitioning does not

generate the fewest partitions but does have the lowest error. We

believe these results show that our technique will become increas-

ingly preferable as IPv6 usage grows and scanning IP-space – even

one IP address per active /48 prefix – becomes infeasible.

4.5 Use Across Client Populations
As shown in Section 3.1, none of our datasets have complete cov-

erage of the Internet. Thus, the partitions generated may only be

representative for the subset of IP-space used in their creation. In

particular, the IP addresses in authoritative DNS service logs are

typically recursive resolvers. Thus, the partitions may be specific

to recursive resolvers and miss catchment structure for other client

populations.

To explore this notion, we use a dataset of DNS logs from an any-

cast recursive resolver service where the clients are stub resolvers,

likely located in edge or home networks. Shown in Table 1 as R, we
measure the overlap between R and D2w , which were collected on

the same day. As expected, we find that only 6% of IP addresses and

35% of their covering /24 blocks in R are also in the D2w dataset.

For comparison, 60% of IP addresses and 83% of /24 blocks in the

D2w dataset are also in the D1w dataset, a week apart. The error

on R using partitions from D1w is 8% in IP addresses and 3% in

DNS queries, much higher than the 0.13% and 0.04%, respectively,

reported in Table 2. Thus, we conclude that the partitions must be

generated from the traffic of the same client populations where the

partitions are intended to be used.

5 RELATEDWORK
de Vries et al. [12] propose a technique for measuring anycast

catchments of responding IP addresses on the Internet, sampling

one IP address per /24 prefix as in [15]. Our work is complementary

to their work, showing that if the sampling is done strategically
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using passive measurement from deployed anycast services then

both the number of samples and the error in estimated catchments

can be reduced. While a /24 prefix is the smallest routable prefix on

the Internet, traffic from a /24 prefixmay still be split among anycast

catchments which will be missed by sampling one IP address per

/24 prefix. Sermpezis and Kotronis [28] propose a method that can

infer catchments with uncertainty. The uncertainty in the inferred

catchments depends upon the amount of data available on the

network graph and the policies implemented by ASs. In contrast,

our method has no reliance on knowledge of the network graph or

specific policies, instead relying upon passive measurement from

deployed anycast services. Both methods aim for the same goal and

whichmethodwill produce amore accurate depiction of catchments

likely depends upon the data available for analysis. de Oliveira

Schmidt at al. [11] show that surprisingly few intelligently placed

PoPs are needed to provide good global latency for an anycast

service. Our work, in conjunction with the scanning proposed in

[12], can aid in intelligently placing future PoPs by analyzing the

catchments formed by existing PoPs. Many works evaluate anycast

deployments using probing traffic [3, 7, 8]. We take the opposite

approach, evaluating catchments by passive measurement of traffic

to anycast deployments.

6 CONCLUSION & FUTUREWORK
In this paper, we propose a technique for partitioning the Inter-

net using passive measurements of existing anycast deployments

that splits IP-space into consistently routed partitions, i.e., all IP

addresses within a partition are part of the same catchment for

an arbitrary anycast deployment. To implement the technique, we

present an algorithm for merging the catchments of multiple any-

cast deployments together. The resulting partitions can predict

consistent routing with low error even 2 weeks after the partitions

are generated. Finally, in comparison to alternative methods, we

demonstrate that the partitions generated from anycast catchments

are both fewer – and thus able to represent the Internet with less

active measurements – and lower error.

We highlight the following areas for future work. (i) Routing
changes in the training data pose a problem for our methodology.

We propose a technique described in Section 3.2 to deal with rout-

ing changes and demonstrate good results using it. However, other

solutions producing better results may exist. (ii) We focus on the

use of the partitions for predicting anycast catchments. However,

changes in catchment are also indicative of routing changes in

general. Knowing the boundaries within IP-space where routing

changes occur is likely beneficial in other measurement studies

as well. (iii) Multiple anycast prefixes were available to us for our

analysis, however multiple anycast prefixes is not inherently nec-

essary to produce partitions. A single anycast prefix could be used,

iterating through multiple deployments instead. This may allow

use of many more than the 22 anycast deployments in this paper

which, as noted in Section 4.1, is too few. There remains, however,

a need for multiple distinct deployments.
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