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Dynamic TCP Proxies: Coping with Mobility and Disadvantaged 

Hosts in MANETs 
 

 

Abstract 
by 

KYLE G. SCHOMP 

 
 

TCP proxies have been introduced as a method to improve throughput and reduce 

congestion in mobile ad hoc networks. Proxies split the path into several shorter 

paths which have higher throughput due to reduced packet loss and round trip time. 

As a side effect, congestion is reduced because fewer link layer retransmissions 

occur. In current protocols, proxies are assigned at the start of the transfer and must 

be used for the duration. Due to mobility and congestion change, pinned proxies can 

actually reduce throughput. 

In this thesis, we present a second version of the DTCP protocol which includes the 

ability to switch proxies in the middle of a transfer. We demonstrate in the Network 

Simulator version 2 that the new protocol performs better than other related 

protocols in simulated mobile ad hoc networks with varying levels of mobility and 

congestion. 
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Chapter 1 – Introduction 

 

 

Applications in mobile ad-hoc networks (MANETs) can suffer from poor link quality. 

TCP in particular suffers from poor link quality due to frequent congestion window 

backoff. To resolve this problem, the use of TCP proxies to reduce end-to-end round trip 

time and packet loss rate has been advocated. DTCP is a protocol which places proxies 

for this purpose. TCP proxies create an overlay network that remains pinned for the 

duration of the transfer. Due to factors including mobility and congestion change, the 

overlay may become suboptimal. We introduce a method for switching proxies during a 

transfer, which we call migration, and extend the DTCP protocol to include it. The 

extensions to the protocol detect when nodes move and congestion change. When either 

occurs, migration is performed and the TCP transfer continues on a new set of proxies. 

In addition to migration, we reintroduce TCP end-to-end principles by the addition of an 

end-to-end session state which is forwarded between proxies. The TCP end-to-end 

principle of guaranteed delivery is broken by proxies when they acknowledge data before 

it reaches the ultimate destination. The end-to-end session state acknowledgement returns 

guaranteed delivery to the protocol. The cost of added end-to-end state signaling is 

reduced by a method of piggybacking upon existing TCP signaling. 

Two prominent methods have been introduced to leverage TCP proxies to improve 

throughput in MANETs. Kopparty et. al. [Kopparty et. al., 2002] place proxies uniformly 

along the path in their Split TCP protocol, while Ouyang et. al. [Ouyang et. al., 2009] 
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encloses disadvantaged links with proxies to mitigate their effect on the rest of the 

network in their DTCP protocol. Both protocols assign static proxies at the beginning of 

the transfer. This thesis builds off the work performed by Ouyang et. al. 

We introduce DTCPv2 in this thesis. The work performed by Ouyang et. al. is labeled 

DTCPv1 to prevent confusion. DTCPv2 is designed to maintain the improvements in 

throughput and reductions in congestion observed in DTCPv1 while adding mobility and 

congestion change handling. DTCPv2 also reintroduces TCP end-to-end semantics to the 

protocol. The protocol is validated in the Network Simulator version 2 [NS2, 2009]. We 

also show results of the protocol in a simulated MANET to demonstrate the potential of 

DTCPv2. 

Chapter 2 presents a detailed look at the protocol and the individual operations it 

performs. Chapter 3 lays out our method of validation and simulation. In chapter 4, the 

results of all the NS2 simulations are presented. Chapter 5 contains a discussion of the 

results and chapter 6 has the conclusions we draw from the results. Finally, chapter 7 

highlights some areas for future work. 

 

1.1 – Background 

 

Mobile ad hoc networks (MANETs) are self-configuring networks of wireless nodes. 

Communication occurs over a path consisting of one or more wireless links. The quality 

of the links can vary dramatically due to various forms of interference either external to 

the network or caused by congestion. Due to mobility, links can also break entirely when 

one node moves away from another. 
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TCP was designed to perform over existing wired internetworks where packet loss is an 

indicator of congestion. TCP reacts to packet loss events by cutting throughput to avoid 

over utilization of the link. In MANETs, there are many sources of packet loss including 

interference, node movement, data corruption, and congestion. Because TCP reacts to all 

sources of packet loss in the same manner, the throughput of TCP in MANETs is often 

substantially lower than the throughput which the network can support. 

Since each link in a MANET has the potential to cause packet loss, we can reduce the 

probability of an individual packet being lost by reducing the hop-distance of a TCP 

connection [Holland and Vaidya, 1999]. Reduced packet loss improves TCP throughput 

[Kurose and Ross, 2005]. Furthermore, reducing the number of hops in a TCP connection 

reduces the round trip time of the connection, again improving TCP throughput. One or 

more TCP proxies serve the purpose of reducing the hop-distance of TCP connections by 

splitting them into two or more shorter TCP connections [Kopparty et. al., 2002]. 

TCP proxies have the highest throughput when they can send data at the same rate at 

which they receive data [Ehsan and Liu, 2004]. This happens when the throughputs of all 

the short TCP connections are balanced. Since TCP throughput is affected by packet loss 

and round trip time, placing TCP proxies more frequently in areas where packet loss is 

high and less frequently in areas where packet loss is low achieves balanced throughput. 

This method of proxy placement is the central idea around congestion aware proxy 

placement in DTCP [Ouyang et. al., 2009]. 
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1.2 - Related Work 

 

Bakre and Badrinath [Bakre and Badrinath, 1995] present I-TCP which is designed to 

mitigate poor performance experienced by mobile hosts when connecting to existing 

internetworks. Because of mobility and the unreliable nature of wireless networks which 

are not handled well by IP-based protocols, they designed I-TCP to separate the wireless 

network from the wired network. I-TCP allows TCP connections to migrate when the 

mobile hosts switches cells. 

Kim et. al. [Kim et. al., 2005] design RCP to move state data to the recipient side of the 

connection in mobile wireless networks. When the sender is within existing internetworks 

and the receiver is a mobile wireless node, RCP is designed for better congestion control, 

loss recovery, and power management over the last-hop wireless link. In addition, 

moving state data to the receiver allows for seamless server migration during handoffs. 

Shieh et. al. [Shieh et. al., 2005] introduce Trickles, a protocol which includes server state 

data within the communication effectively removing state from one end of the 

connection. Trickles enables stateless servers, instantaneous and transparent failover, and 

connection redirection. 

Soenren et. al. [Snoeren et. al., 2001] present techniques for connection failover for 

replica servers. They use TCP connection migration mechanisms to achieve robust, fast, 

and fine-grained connection failover without interfering with the operation of the 

receiver. 

Luglio et. al. [Luglio et. al., 2004] demonstrate how TCP proxies can be used to divide 

terrestrial connections across a satellite network. Proxies are placed between the 
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terrestrial network and the satellite network and on the satellites to improve connection 

throughput. 

Cohen and Ramanathan [Cohen and Ramanathan, 1997] show that using proxies at the 

edge of hybrid fiber coaxial (HFC) networks can improve throughput. By handling 

packet loss which occurs in the HFC locally at low latencies, a proxy server enables 

faster recovery from packet losses. 

Kopparty et. al. [Kopparty et. al., 2002] recognized that TCP in mobile ad hoc networks 

wrongly attributes packet loss due to line failures as congestion. The problem becomes 

worse as the hop-distance of TCP connections increases. They introduce Split TCP which 

places TCP proxies uniformly along the route to break up long hop-distance connections 

into multiple short hop-distance connections. 

Ouyang et. al. [Ouyang et. al., 2009] develop the DTCP protocol to combat the 

heterogeneous nature of link quality in ad hoc networks. By enclosing poor quality links 

with TCP proxies, they isolate the effect of poorly performing links on the rest of the 

network and improve overall performance. 
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Chapter 2 – Protocol 

 

 

DTCPv2 improves DTCPv1 by adding the ability to switch proxy placement during 

communication, rather than solely at the beginning of the connection. Switching proxy 

placement, which we call proxy migration, allows DTCPv2 to adapt to rapidly changing 

congestion and routing on MANETs. We also reintroduce TCP's guaranteed delivery 

end-to-end semantics into DTCPv2. TCP proxies violate end-to-end semantics by 

acknowledging data before it is delivered to the destination. To accomplish TCP's 

guaranteed delivery, we introduce a new layer directly above the transport layer in the 

protocol stack. The new layer handles end-to-end communication, while the transport 

layer handles communication between proxies. The two ends of a DTCPv2 session 

maintain two full states: a TCP state with the nearest proxy and a DTCP state with the 

opposing end of the session. 

The connection between the active end of the DTCP connection (the source) and the 

passive end of the connection (the sink) is known as the global connection. The 

connections between the source and the nearest proxy, between proxies, and between the 

final proxy and the sink are known as local connections. Note that each proxy is 

comprised of a local sink and a local source which are connected with the prior source 

and post sink, respectively. 
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DTCP_HDR
DTCP_HDR Length

Global Acknowledgement number

Global Sequence Number

FlowID

328 16 24

Flags

Flags = GACK|BRKN|MREQ|MREP

Bit: 0

 

Figure 1 

To handle the addition of global connection data to communication, we introduce a 

DTCP header into the TCP header options. The structure of the header is shown in Figure 

1. The DTCP header is 12 bytes including the TCP option number and length field. The 

data within this header is relevant to the global connection at the global source and global 

sink. As a result, it is largely ignored by the proxies.  

DTCPv2 connection setup begins with a new state called metrics collection. The source 

uses the collected metrics to compute proxy placements and then proceeds into the proxy 

setup state which occurs during TCP's three-way handshake. Once TCP enters the 

established state, the source routinely performs congestion detection and reacts to routing 

changes. If the connection needs to migrate to a new set of proxies due to either 

congestion changes or routing changes, the source transitions to the proxy setup state. 

Once communication is complete, the source closes the connection. Each DTCP 

extension to TCP is described below. The description below takes the perspective of a 

one-directional connection where data originates at the source and is received at the sink. 

Note that DTCP is fully two-way capable. It is described in one-direction for clarity. The 

implementation described also requires that the Dynamic Source Routing (DSR) protocol 

be used at the network layer. DTCP uses some cross-layer optimizations to improve 
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performance. Though DTCPv2 is designed to perform with DSR, DSR is not strictly 

required. Where cross-layer optimizations exist, alternatives are described which do not 

require the DSR protocol. 

The following description of the DTCPv2 protocol is based of an implementation in the 

Network Simulator version 2 [NS2, 2009]. As such, it varies from a real world 

implementation in a few details. A real world implementation would be functionally 

equivalent to the implementation described here. 

 

2.1 – Metrics Collection 

 

The first communication performed between the global source and sink of a DTCP 

session is a metrics request (MREQ) from source to sink and a metrics response (MREP) 

from sink to source. Each node traversed along the path from the source to the sink will 

attach congestion metrics to the packet. The metrics are then returned to the source in the 

metrics response packet. Collection uses the initial TCP timeout value. If timeout occurs, 

the MREQ is retransmitted. The first MREP received completes metrics collection. Once 

metrics are collected, the source has a list of all nodes traversed in order from the source 

to the sink along with their respective metrics. 

We collect the following metrics: link-layer transmission queue length, MAC layer 

retransmission count, and MAC layer drop rate. the queue length is a reflection of the 

load placed upon the node, while the retransmission count and drop rate indicate the level 

of interference on the link. We assume that high values for any of these metrics indicate 

congestion. A jump in the metrics between two adjoining nodes is a congestion edge. 
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Edges are detected by using a threshold parameter which is empirically derived. All three 

metrics are calculated using the exponentially weighted moving average method to 

produce smoothed estimates. 

The collection of metrics is performed by a packet filter at the network layer of each node 

in the system. When the source wishes to collect metrics for proxy setup, it sends a data-

less TCP segment with the DTCP MREQ flag set. The flag is included in the DTCP 

header, Figure 1. Each TCP segment received by a node is sent through the packet filter. 

If the metrics request flag is found, the node inserts its own metrics. If the DTCP header 

is not found or the MREQ flag is not set, the TCP segment is unchanged. The packet 

filter is installed upon each DTCP-enabled node before communication begins. The 

metrics request segment continues all the way to the sink which handles metrics requests 

received in the TCP listen state by returning a data-less TCP segment with the collected 

metrics attached and the DTCP MREP flag set. Metrics are collected source-to-sink 

rather than sink-to-source because of the possibility of the two paths not being equivalent. 

This is true in some implementations of DSR and other routing protocols where wireless 

links are not assumed to be bi-directional. 
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DTCP_MET
DTCP_MET Length

Link-layer transmission queue length

Node Address

P

R

328 16 24

MAC layer retransmission count

MAC layer drop rate

Proxy port

repeat

Bit: 0

Padding{
 

Figure 2 

The DTCP metrics TCP header option is shown in Figure 2. The first two fields, 

DTCP_MET and Length, are the TCP option number and length fields. The rest of the 

fields are set per node. Each node inserts its metrics at the end of the header option and 

updates the length field. For each node, the 3 metrics are collected along with the node's 

IP address. The PR flag is set indicating whether or not there is a proxy for the 

connection on this node. If there is, the port number of the proxy is also set. In total, 19 

bytes of data are collected per node. 

The original version of DTCP used DSR route requests (RREQ) and replies (RREP) to 

gather metrics. Each node, in addition to appending its address upon a RREQ, appends 

the metrics as well. When a route is cached by a node, it also stores the metrics for the 

nodes along the route. This is convenient in that the metrics collection and DSR route 

discovery can be combined, reducing startup time. However, we recognized that routes 

returned to the source are often from caches within the network and the metrics data may 

become stale. In order for DTCP to react to a dynamic network, the metrics must be 

collected in real time. Also, as a secondary goal, we wish to reduce the cross network 



18 

 

layer mechanisms and allow DTCP to function with a variety of network layer protocols. 

Actively collecting the metrics at startup accomplishes both goals. 

 

2.2 – Proxy Setup 

 

Using the results of metrics collections as input, the source runs the proxy selection 

algorithm. The output of the algorithm is a list of proxies along the path. DTCPv2's proxy 

selection algorithm is unchanged from DTCPv1 [Ouyang et. al., 2009]: "We ... use a 

simple sum of the [link-layer transmission queue length and MAC layer retransmission 

count] metrics as a combined metric ... We call it the 'proxy-selection metric'. The higher 

the value of the proxy selection metric of a host the more disadvantaged this host is." The 

source then runs the algorithm described by the pseudocode in the   
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Appendix. First, proxies are placed on the less disadvantaged side of each congestion 

edge. Next, additional proxies are added to zones of 6 or more nodes in which proxies 

have not already been placed. These extra proxies are placed to provide a fair comparison 

with Split TCP by placing a similar total number of proxies. Note that there are 

alternative proxy placement algorithms. The one described here is the one primarily used. 

Other algorithms are described in [4.2]. 

The source creates a SYN segment for the connection and inserts the proxy list into the 

TCP header options. The SYN segment is sent, directed to the global sink's address. A 

second packet filter in the network layer intercepts TCP SYN segments. When a SYN 

segment is intercepted by a node along the path and the proxy list contains the node's 

address, a TCP proxy is installed and receives the segment. The new proxy copies the 

SYN segments source address as the destination of the proxy sink and the SYN segment's 

destination address as the destination of the proxy source. The new TCP proxy responds 

to the SYN with a SYN+ACK using standard TCP conventions. The proxy also sends a 

SYN segment again to the global sink, inserting the proxy list into the TCP header 

options minus itself. Once a SYN+ACK segment is received by a source (either the 

global source or a proxy source), the destination address which was originally the global 

sink is replaced with the source address of the SYN+ACK segment. This insures future 

segments will be directed to the correct proxy and avoids protocol brittleness caused by 

routing changes. Proxies generate a new SYN segment rather than forwarding the 

original one. This means that the source address will be the proxy's address, allowing the 

SYN+ACK segment to be directed back to the proxy. This is important because the proxy 
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may not be on the reverse path to the source. After the initial SYN segment, all future 

segments are directed to the proxies. 

DTCP_PRL
DTCP_PRL Length

Proxy Address

328 16 24Bit: 0

{repeat

 

Figure 3 

The DTCP proxy list TCP header option is shown in Figure 3. The first two fields are the 

TCP option number and option length as required by TCP. Following is a list of proxies 

by the node's IP address. The number of address is the list is determined by the length 

field. Assuming IPv4 addresses, the length divided by four is equal to the number of 

addresses in the proxy list. 

In addition to the method described above, several other options were explored for 

performing the metrics collection and proxy setup steps. The possibility of using route 

discovery to collect metrics was already discussed and discarded due to cross-layer 

implementation concerns and caching concerns. It is possible to avoid the extra round-

trip time imposed during metrics collection by combining it with the SYN segment. 

Proxies must then be set up after the SYN segment. The sink can potentially handle 

responsibility for proxy setup by attaching the proxy list to the SYN+ACK segment. Due 

to the potential divergence of the forward path and the reverse path, this solution is not 

recommended. Also, the sink would serve the function of assigning proxies. This 

function is typically reserved for the source or possibly some intermediary. Allowing the 

sink to assign proxies is a significant paradigm shift which deserves a thorough 

investigation. 
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Alternatively, proxy setup may be performed on the source ACK segment. However, 

such a solution suffers because there is no response to the source ACK. Without a 

response, the source does not know the address of the next proxy. The protocol becomes 

brittle in the eventuality of a path change after the source ACK segment and before the 

first data segment. Any attempt at proxy setup after this point in the connection 

effectively bypasses the TCP three way handshake and can have unforeseen 

repercussions. 

 

2.3 – End-to-End Semantics 

 

TCP guarantees delivery of data via acknowledgments from the sink to the source. TCP 

proxies interfere with the end-to-end semantics of TCP by acknowledging data before it 

is received by the sink. We resolved this issue by adding global sequence numbers 

(GSEQNUMs) and global acknowledgements (GACKs) to DTCP. In addition to the TCP 

sequence number, each segment has a DTCP global sequence number. The global 

sequence number remains the same when the segment arrives at the sink as it was when it 

was sent by the source. TCP sequence numbers are local sequence numbers only and can 

vary depending upon what each proxy's seed value is. We implemented GACKs as 

cumulative acknowledgements as in TCP Reno, however selective acknowledgements 

would function equivalently. When data is received by the global sink, a GACK is 

generated and is piggybacked upon a local ACK. Piggybacking the GACK prevents 

packet overhead on the network. The GACK is passed between proxies via piggybacking 

on local ACKs until it arrives at the global source. DTCP uses a timeout on GACKs to 
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detect a connection loss. If a new GACK is not received before the timer lapses, the 

connection is assumed to be broken. 

Multiple GACKs may be received by a proxy before it is ready to send a local ACK. 

Multiple GACKs may be combined into a single GACK by select the greatest 

acknowledgement by value. Selective GACKs require merging logic at this stage since 

multiple selective GACKs may be received before the proxy is ready to send a GACK. 

The merging logic would not change the fundamental principles of proxy GACK 

piggybacking. Another scenario arises when the proxy no longer has any local ACKs to 

send. This commonly occurs at the end of a connection once all data has been sent by the 

source, though it may also occur during a connection if the source pauses communication 

for any reason. Proxies have a delayed GACK timer. Whenever a GACK is received, the 

timer starts. If no local ACKs are transmitted before the timer expires, a special GACK 

segment is generated. The segment has the GACK only flag set in the DTCP header. The 

GACK only flag overrides normal TCP handling of the segment and only the DTCP 

header is read. GACKs are guaranteed to be delivered to the source eventually and excess 

traffic is kept to a minimum by the delay timer. 

The addition of GACKs allows for a performance improvement to proxy operation. 

Normally, a TCP proxy will receive TCP segments, reorder them into a data stream and 

split the data stream into segments to retransmit. However, GSEQNUMs provide a 

segment ordering independent of TCP sequence numbers. Proxies can send out segments 

in any order, as long as the GSEQNUMs remain unchanged. Therefore, rather than 

reordering and generating a data stream, the proxy sink maintains a list of what segments 

it has received, for the purpose of local acknowledgements, and forwards segments to the 
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proxy source as soon as they are received. The proxy source has a buffer of segment data 

and GSEQNUM ordered by GSEQNUM. The proxy source sends segments from this 

buffer. This can improve proxy sending rate and reduce the amount of buffer space 

required since the proxy source can send segments immediately which were received out-

of-order. We call this new mechanism proxy per-segment forwarding. 

The source and sink must keep global state data along with local state data. Data at the 

sink must be reassembled using the global sequence numbers now. The addition of global 

sequence numbers also adds a significant amount of overhead to segments in the DTCP 

header. Each segment carries a GSEQNUM and GACK for a total of 8 additional bytes of 

header. We justify the overhead with the compliance to TCP end-to-end semantics and 

offset the overhead with the throughput improvements provided by DTCP. 

 

2.4 – Congestion Change Detection 

 

2 63 4

  

Node with proxy

Regular node

5 71

2 63 4 5 71

Congestion Area
 

Figure 4 
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During the course of a long communication, it is possible for the congested zones along a 

path to change. When congestion change occurs, a proxy placement different than what is 

currently in use may improve connection throughput. Consider the situation in Figure 4. 

Originally, a proxy is placed on node 4. Over time, the congestion zone changes to 

encompass node 4. Our proxy placement heuristic suggests that a proxy at node 3 would 

perform better in terms of throughput.  

To detect congestion change, the source performs the periodic action of requesting 

updated metrics along the path. It uses the same TCP option as was used during the initial 

stage metrics collection but piggybacks the header optional on an outgoing data segment. 

Metrics collection is piggybacked for two reasons: it reduces overhead on the network 

and, if there are no data segments to send, there is no need to check congestion. The 

metrics response is piggybacked on a GACK. 

The metrics returned to the source included a field which indicates whether each node is 

a proxy (Figure 2). The SYN segment is always routed to the global sink so that when it is 

intercepted the proxies know where to send their own SYN segment. There is a window 

between when the metrics are initially collected and the SYN segment is sent where a 

routing change may occur. If that happens, the SYN segment will take a different path to 

the sink which may or may not include the proxies. As a result of this design, a subset of 

the proxies originally selected by the source may be in use. Metrics collection includes 

proxy information for an explicit list of what nodes are currently acting as proxies. We 

use the proxy list contained within the collected metrics as the current proxy list. It is 

used to determine if migrating will be beneficial. 
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Based upon the metrics returned, the source may decide to migrate to a new set of 

proxies. To decide, the proxy selection algorithm is re-run with the new metrics to obtain 

a new proxy list. Using the new proxy list and the current proxy list, the throughput 

estimate of each local connection is computed. The formula for the throughput of a TCP 

connection [Kurose and Ross, 2005] is  

 

Equation 1 

where maximum segment size (MSS) is constant. The other values in the formula, round 

trip time (RTT) and loss rate (L), are unknown. However, it is our contention that there is 

a direct relationship between TCP round trip time and link-layer transmission queue 

length (TQ) and MAC layer retransmission count (RT). There is also a direct relationship 

between TCP loss rate and MAC layer drop rate (DR). We estimate TCP throughput as  

 

Equation 2 

The throughput estimate equation is unlikely to give an accurate value of throughput. TQ 

and RT are counting values which increase when the RTT increases in seconds. They are 

not the only source of increase in the RTT. MAC layer drops are also not the only source 

of TCP loss events. However, we expect a connection with a larger value of the 

throughput estimate to have larger real throughput than a connection with a smaller 

throughput estimate. We use the values from this formula for comparison of the quality 

of TCP connections. 
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The values TQ, RT, and DR are for an entire TCP connection which may span several 

nodes. To compute TQ, RT, and DR, the individual node values tq, rt, and dr from 

metrics collection must be summed. Link-layer transmission queue length and MAC 

layer retransmission count are simple summations shown in the following two formulas, 

respectively. 

 

Equation 3 

 

Equation 4 

MAC layer drop rate are events and must be treated differently. The addition rule for 

independent events is 

 

Equation 5 

Therefore, the cumulative drop rate across x nodes is given by the recursive formula 

 

Equation 6 

 

Equation 7 
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The drop rates of adjacent nodes may not be independent. If two nodes attempt to send at 

the same time, the result will be a collision causing a loss event at both nodes. The drop 

rate computed here is an upper-bound on the actual drop rate. 

The throughput of each local connection is computed using Equation 2. Previous research 

in TCP proxies demonstrates that the overall throughput is dominated by the local 

connection with the lowest throughput [Ehsan and Liu, 2004]. The lowest throughput 

local connections of the new proxy list and the old proxy list are compared. If the 

estimated throughput computed for the new proxy placement is greater than that 

computed for the current proxy placement by a parameter threshold, the source migrates 

to the new set of proxies. See the   
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Appendix for pseudocode of the complete algorithm. 

Several other policies for migration due to congestion changes have been explored. An 

alternative policy is to always migrate if there is a sufficient amount of data in route. The 

idea is that when a new proxy list is computed, it is strictly better than the current proxy 

list and data in route hides the cost associated with rerunning TCP slow start and creating 

proxies. The former should always be true assuming that our heuristics for proxy 

placement are correct. This policy does not, however, reflect the possibility of an 

insignificant improvement by migrating. If the new proxy list provides better 

performance by a very small margin, the benefits of migration may be outweighed by the 

costs. The policy chosen can handle insignificant improvements by a tunable threshold 

value. 

 

2.5 – Path Change Detection 
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Figure 5 

Mobility can cause the path used for routing between two nodes to change with time. For 

long TCP sessions, the path can change several times. TCP proxies lock a session to the 
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nodes along the original path. As a result, there may exist preferable paths between the 

source and the sink which do not include the proxies. Figure 5 shows the case where the 

proxy moves away from the source and sink. In Figure 5, we would much prefer for the 

session to follow the dashed path rather than continue through the proxy. We call this 

case "proxy drift." The ability to adjust proxy selection as the path changes will greatly 

improve throughput of the connection over its entire life span. 

We explored several possible methods for performing path change detection. In addition 

to normal traffic from the source, we could send a polling packet directly to the sink 

collecting the path traversed and returning it to the source. Such a method is limited by 

the polling period and the overhead imposed by the extra packets and routing 

information, but could be combined with congestion change detection.  

We opted to harness DSR Route Error packets. When a packet has been retransmitted the 

maximum number of times by the MAC layer and no acknowledgement has been 

received, DSR treats the link as "broken." It sends a Route Error to each node which has 

routed a packet over the broken link since the last successfully acknowledged packet 

[Johnson et. al., 2007]. We utilize Route Errors by adding a list of DTCP sessions to the 

DSR route cache at the source and proxy source. When the DSR layer on the source 

receives a Route Error, our DSR extension will select the DTCP connection(s) from the 

list which are routed across the broken link. Those connections will receive an alert from 

the network layer to the transport layer, indicating that a path change is occurring. When 

a proxy receives a Route Error alert, it sets the BKRN flag on the next segment returned 

to the global source. The source acts upon a BRKN flag as if it received a Route Error 
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itself. The source can thus be alerted to a broken route anywhere along the path to the 

global sink. 

By using Route Error packets, we can detect path changes without adding any additional 

overhead to the network. It also gives us a more immediate notification of a route change 

than the previous method described, making the protocol more effective in a highly 

mobile environment. Our implementation requires DSR at the network level making it 

less generic, but is substantially more efficient than a polling method. 
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Figure 6 

We further recognized that there are situations where the path selected by DSR is 

suboptimal and will not be broken. Consider Figure 6. The sink and several intermediate 

nodes move closer to the source such that the path is not broken, but a far better path 

exists directly between the source and the sink. We could perform better than DSR by 

detecting the better path. However, we stand by a policy of performing no worse than 

DSR. We believe that solving situations like Figure 6 is a network layer issue which 

should be resolved within the DSR protocol. 

It is common for DSR Route Errors to be false positives. Particularly when congestion is 

high on a link, erroneous Route Errors may be frequently sent. DSR uses route requests 

to handle false positives and may continue to use the same route after receiving an 



31 

 

erroneous Route Error. When DTCP at the source receives a Route Error alert from the 

network layer, it transitions into the route recovery state during which it attempts metrics 

collection. TCP operation is not interfered with at this point. The metrics collection 

packet is directed to the global sink rather than an intermediate proxy. The metrics 

returned to the source will either be for a new path or the unchanged path. The former 

indicates the Route Error was valid and migration is immediately performed, while the 

later indicates a false positive. In the case of a false positive, the collected metrics are 

used in congestion change detection rather than be wasted. 

2.6 – Migration 

 

Migration is the operation of switching from a set of established proxies to a new set of 

proxies. It occurs when either congestion change detection or path change detection 

determines that migration is necessary. To perform migration, new local TCP 

connections need to be established and the global state data at the source and the sink 

must be connected to the new local connections. 

The source begins by creating a new TCP session and copying the global state and any 

buffered data over to the new session. Calls from the application layer down are 

intercepted and directed to the new TCP session. Using the metrics collected during the 

congestion change detection or path change detection, the source enters the proxy setup 

phase. Proxies are established as described in proxy setup. Note that the previously 

constructed proxies cannot interfere with the new proxies because the source's port 

number has changed. Proxies effectively do not distinguish between a second DTCP 
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connection and a migrated DTCP connection. The source will send data from the buffer 

at the location where it stopped sending before migration. 

NS2 uses a 2-tuple (destination IP and port) for demultiplexing incoming transport layer 

segments. A real world implementation would use a 5-tuple (source IP and port, 

destination IP and port, and flow id) for demultiplexing. The implementation here is 

based off performing a 5-tuple demultiplex within the TCP state handling. A real world 

implementation would handle segments by demultiplexing to a DTCP state a half layer 

above the TCP state. 

When the SYN segment arrives at the sink node, it is demultiplexed to the current TCP 

session because the port number has not been changed. When the sink receives a SYN 

segment from a new source address/port, it performs sink half of migration. To prevent 

issues with misdirected SYN segments causing migration, we added a flow id to the 

DTCP header. The value of the flow id is chosen at random by the source at startup. It 

remains unchanged for the duration of the DTCP connection. Since the IP address, port 

number, and flow id must be correct to cause migration, the probability of a non-

malicious segment causing migration is very low.  Another node would have to randomly 

select the same flow id and direct a SYN segment to the same destination IP address and 

port. The sink moves the global state and data buffers to the newly created TCP session 

and returns a SYN+ACK segment to the (proxy) source of the SYN segment with the 

new sink port number. The buffers do not need to be copied; they may simply be 

referenced by the new TCP session since the old TCP session will not use them again. 
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The sink will continue to receive upon the old TCP session until it is closed. Any data 

already sent by the source at the time of migration will be received by the old TCP 

session and directed to the new TCP session to be reassembled by global sequence 

numbers for application delivery. If migration was caused by a proxy becoming 

disconnected or failing, some data may be lost. We recover from this by introducing 

global retransmits. Data is retransmitted using new local sequence numbers. At the sink, 

it is reassembled using the global sequence numbers, resulting in the correct final 

ordering of the data. Global retransmits are triggered by duplicate GACKs. 

Experimentally, we found that the threshold for duplicate GACKs must be very high due 

to GACKs from the sink lagging behind local ACKs from proxies. All data sent after 

migration is guaranteed to be delivered providing an upper bound on the range which 

must be retransmitted. Global retransmission mimics the behavior of TCP retransmission 

by continuing until either the upper bound is reached or a new GACK is received. 

Once the new TCP connection is established, the old connection may be safely disposed 

of via standard TCP shutdown procedure. When a proxy sink is closed, it sends all 

buffered data from the proxy source and then closes the source as well. Eventually, all 

proxies will close and the sink will close as well. In the case of a disconnected or failed 

proxy, the sink on the opposite side of the failed proxy will eventually timeout and close. 

Because of the timeout required, a new DTCP connection between the source and sink 

will always be established before the previous connection is closed. 

 

2.7 – Shutdown 
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Shutdown of a DTCP connection proceeds very similarly to standard TCP. The one 

exception is that the source must wait for the correct GACK value, rather than local ACK 

value. Once the GACK value equal to the highest global sequence number sent plus one 

is received, all data is guaranteed to have been delivered to the global sink. If timeout is 

reached before the GACK is received, the connection must be assumed to be broken and 

the amount of delivered data is unknown. When the TCP connection on the sink is closed 

and there is not another TCP connection already established, the DTCP state on the sink 

reaches the closed state. 
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Chapter 3 – Simulation 

 

 

The protocol was validated and tested via simulation using the Network Simulator v2.31 

[NS-2,]. DTCPv2 was built upon the TCP Reno implementation packaged with NS-2. In 

the validation simulations, wireless nodes are placed in a straight line in a flat grid. 

Congested nodes are simulated by adding two TCP Reno sessions across the congested 

node from a node directly above the congested node to another node directly below it. A 

warm-up time of 10 seconds is used to stabilize metrics data for DTCP's use. Simulations 

end after 1500 seconds. In almost all simulations, performance is measured during the 

transfer of a 1.44MB file. When a different file size is used, it will be noted. All 

simulations use the wireless model parameters listed in the   
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Appendix. These parameters simulate the Orinoco 802.11b card. 

DTCPv2 is compared against DTCPv1, Split TCP [Kopparty et. al., 2002], and TCP 

Reno without proxies in the three simulations. Split TCP is an alternative method of 

proxy placement. It is not congestion aware and places a proxy every three nodes 

between the source and the sink. TCP Reno without proxies is referenced as NoProxy to 

conserve space and easier reading. 
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3.1 – Validation simulations 

 

To validate the new protocol, we recreated the simulations used to compare DTCPv1 

against established protocols in [Ouyang et. al., 2009]. The three simulations are labeled 

9-node, 10-node, and 12-node after the length of the path between the source and the 

sink. Together, these simulations demonstrate the performance of congestion aware proxy 

placement along increasingly congested paths. In all simulations, node 1 is the source and 

the highest number node is the sink. The 9-node simulation has a single point of 

congestion at the sink, which will cause a proxy to be placed on the congestion edge at 

node 8. An additional proxy will be placed within the uncongested zone at node 4. The 

10-node simulation has a single point of congestion at the 9th node, resulting in the same 

proxy placement as the 9-node simulation. Note that the 10-node simulation has one more 

congestion edge than the 9-node simulation and a congestion zone of 2 links, instead of 1 

link. The final simulation, 12-node, has a congestion zone from node 4 to node 10. DTCP 

should place 3 proxies in 12-node: the beginning and end of the congestion zone, and one 

in the middle. In this idealized simulation, we expect any proxy placement to improve 

throughput and reduce congestion. Since the proxy placement algorithm used by DTCPv2 

is unchanged from DTCPv1, we expect similar performance from both protocols. DTCP 

should improve performance the most by encapsulating the congestion zones. 

To test the congestion change mechanism, we set up a simulation based off of the 9-node 

simulation. The 8th node is congested for the first 10 seconds of the file transfer. At 10 

seconds, the cross traffic at the 8th node is shutdown and congestion is added to the 4th 

node. By DTCP's proxy placement algorithm, there should initially be a proxy a node 7. 

Once the congestion change occurs, the proxy placement should switch to node 3 and 
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node 5. We expect DTCPv2 to detect the congestion change within one metrics collection 

time (30 seconds) of occurrence and migrate to a new set of proxies. We expect DTCPv2 

to perform better than DTCPv1 in this simulation because DTCPv1 will continue to use 

proxies which no longer encapsulate the congestion.  

Path change detection was tested by a simulation with two paths from the source to the 

sink. One path has 8 hops while the other path has 13 hops. The short path is initially 

used by the file transfer for the first 10 seconds. After 10 seconds, node 5 along the short 

path moves away and permanently breaks the short path. The long path follows the short 

path until node 4, and then proceeds on a tangent for 6 hops and returns to the short path 

at node 6. This effectively creates a detour around node 5. After the short path is broken, 

transfer will continue using the long path. The simulation was run several times with the 

congestion zone along the long path increasing from 0 to 4. The congestion zone on the 

long path causes migration to be advantageous over maintaining the current proxy 

placement. The paths are set up and congestion placed so as to avoid breaking any of the 

protocols. If node 5 was a proxy for either DTCPv1 or Split TCP, the protocols would not 

finish the file transfer. 
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3.2 - Variant simulations 

 

In addition to placing proxies at congestion edges, the proxy placement algorithm of 

DTCPv1 assigns proxies in uncongested zones every three nodes similarly to Split TCP's 

proxy placement algorithm. These extra proxies have a clear overhead, but an unclear 

benefit. To test what effect uncongested zone placement has on performance, we tested 

DTCPv2 with a new proxy placement algorithm which only places proxies on congestion 

edges. The variant of DTCPv2 using the modified proxy placement algorithm is labeled 

NUCP (No uncongested proxies). Proxies in uncongested zones have no effect on 

throughput and congestion if NUCP performs equivalently to DTCPv2. NUCP would be 

favorable for having a lower overhead than DTCPv2.  

Proxy per-segment forwarding (see 2.3 – End-to-End Semantics) is a new mechanism. We 

postulate that it can reduce buffer space requirements on proxies and improve throughput 

by reducing the delay between when a segment is received by a proxy and when it is 

retransmitted. To test per-segment forwarding, we implemented the Split TCP proxy 

placement algorithm in DTCPv2 and call this new variant Split DTCP. Split DTCP varies 

from Split TCP by the start up, header, and metrics collection overhead of DTCPv2 and 

per-segment forwarding. Per-segment forwarding is the only difference between the two 

protocols which could have the potential to improve the throughput of Split DTCP over 

Split TCP. Comparing Split DTCP and Split TCP effectively isolates the performance 

effects of proxy per-segment forwarding. The buffer space reduction claims of proxy per-

segment forwarding can be substantiated by observing buffer size in all simulations. 
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3.3 - Mobility simulations 

 

The previous simulations are designed to demonstrate and validate the functionality of 

the DTCPv2 protocol under specific conditions. They do not represent real-world 

performance of the algorithm. To do this, we set up several simulations of MANETs 

consisting of 100 nodes. The nodes are initially arranged in a rectangle on a flat grid. The 

source and sink are selected so that the path between them was sufficiently long to cause 

proxy placement in all protocols. Six competing TCP Reno sessions are added to the 

network for congestion and run for the duration of the simulation. Again, a warm up 

period of 10 seconds is used to stabilize the initial metrics maintained within the nodes. 

Node movement is simulated using the Probabilistic Random Walk Mobility Model and 

the Random Waypoint Mobility Model as implemented by [Camp et. al., 2002]. Node 

movement is constrained within the original placement rectangle to maintain node 

connectivity. It is expected that the optimal path between the source and the sink will 

change several times during the simulation. Again, DTCPv2 is compared with DTCPv1, 

Split TCP, and NoProxy. We run the simulation with several rates of movement to 

simulate different levels of mobility in the network. The file size of the transfer is 

increased to 2.4MB to allow the file transfer to progress over several reconfigurations of 

the network. 

The probabilistic random walk mobility model and the random waypoint mobility model 

are two commonly used methods of simulating random movement. Both models function 

by moving nodes at a set frequency. The probabilistic random walk model moves 

individual nodes at each clock tick. The random waypoint model moves a subset of nodes 

at each clock tick. We tested the probabilistic random walk model with 5, 2, and 1 second 
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between ticks and the random waypoint model with 50, 30, and 15 seconds between 

ticks. Note that node movement is not instantaneous. The previous movement may not 

have completed before the next clock tick. 

These two models were chosen to demonstrate DTCPv2 under different potential 

movement conditions. The mobility simulations test DTCPv2 in an environment designed 

to be similar to a real-world MANET. Proxy migration should allow DTCPv2 to avoid 

the performance degradation caused by proxy drift in Split TCP and DTCPv1. Migration 

imposes a cost in setup time. The simulations are run at increasingly faster rates of 

movement to reveals whether migration can keep up with the movement and, if it cannot, 

at what point migration fails. 

 

3.4 – Parameters 

 

The protocol uses three parameters. The congestion edge threshold value remains 

unchanged from previous research. Of the two remaining parameters, the migration 

threshold was empirically determined from the congestion change validation test. In the 

test, the desired outcome is migration. Therefore, the upper bound of the threshold was 

set as the maximum value which would still result in migration within the simulation. At 

the upper bound, any congestion change at significant as in the validation test would 

cause migration. At the lower bound, a threshold of 0 will cause migration whenever 

congestion changes. We recognize that the cost of migration is significant. Therefore, we 

chose a migration threshold which is half way between the upper bound and the lower 
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bound. The threshold value is a balance between reacting to congestion change and the 

cost of migration. 

The other parameter, the metrics collection rate, determines how often the source collects 

metrics about the path for use in congestion change detection. We observed in simulation 

that migration can take up to 10 seconds to complete in some simulations with heavy 

congestion, although the typical migration time was much lower. Metrics collection also 

increases the size of packets. Again, to strike a balance between reaction time to 

congestion change and metrics collection cost, we chose a value 30 seconds for the 

metrics collection rate. We stress that the values used for the migration threshold and 

metrics collection rate may not be optimal. They are sufficient for demonstrating the 

performance of the protocol through simulation. Further, any fine tuning of the values 

can only improve the protocols performance. 
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Chapter 4 - Results 

 

 

Performance of the protocols was measured using four metrics. Source transfer finish 

time is defined as the difference between the time at which the source receives a local 

ACK for the final data segment and the time at which the first segment is sent by the 

source. The local ACK comes from the first proxy in the case of DTCP and Split TCP. It 

comes from the sink when no proxies are being used. The first segment sent by the source 

is the metrics collection segment for DTCPv2 and a SYN segment for all other protocols. 

This metric demonstrates the functionality of proxies to limit the time required to transfer 

on local connections. When the source transfer is finished, the path and nodes along the 

first local connection become available for other, unrelated traffic.  Source transfer finish 

time offers no insight into overall performance and is the least important of the four 

metrics. 

The overall transfer finish time is defined as the difference between the time at which the 

local ACK sent from the sink for the final data segment is received and the time at which 

the first segment is sent by the source. The local ACK is either received by a proxy in the 

case of DTCP and Split TCP and by the source when no proxies are being used. After the 

local ACK is received, DTCPv2 continues to send GACKs back to the source. However, 

DTCPv1 and Split TCP do not have this functionality so a fair comparison including it 

could not be performed. The time and data transfer required for the final GACK are not 

significant enough to change the results. Overall transfer finish time demonstrates the 

throughput experienced by the protocol during the transfer. Proxies are expected to 
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generally improve throughput and a proxy placement which balances the throughput of 

the local connections the best should have the best throughput and the smallest overall 

transfer finish time. 

The channel capture cost metric is a measure of the cost in time per node imposed by a 

transfer upon the network. This metric was first introduced in [Ouyang et. al., 2009]. "We 

first compute, for each [local connection] (note that regular TCP has a single 

[connection]), the product of its transfer time and its hop-distance. We then take the sum 

of these computed products for all path sections. Intuitively, the metric defines the total 

amount of time when any link is engaged in the current TCP transfer. Note that this is an 

aggregate metric indicating the overall effect of the transfer on the network, as a 

particular link will not be continuously busy with an ongoing TCP transfer." A high 

channel capture cost value indicates a high time cost and high imposed congestion cost 

for a transfer. Note that channel capture cost does not account for the amount of available 

bandwidth of a channel that is used by the transfer during the capture time. For this 

reason, channel capture cost favors short term high bandwidth transfers over long term 

low bandwidth transfers. 

Proxies should reduce the energy requirement of a transfer by reducing the hop-distance 

of retransmissions. When TCP Reno without proxies must retransmit a segment, it must 

be transmitted by each node along the path. If a proxy is placed along the path, then any 

segments needing to be retransmitted upon the local connection between the proxy and 

the sink do not need to be retransmitted by the nodes along the path between the source 

and the proxy. The number of node transmissions is reduced and the amount of energy 

required to complete the transfer is reduced along with them. This is a particularly serious 
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concern when mobile wireless nodes are running on battery. We measure the energy cost 

of a transfer by arbitrarily assigning a cost to transmission and reception (including 

overhearing). The cost is in units per second. A large packet will take longer to transmit 

and receive than a small packet. Once the transfer is complete, the sum of the energy 

consumed from each node along the path is the energy cost of the transfer. The protocol 

which reduces the number of retransmissions the furthest will have the lowest energy cost 

and impose the least congestion upon the network. 

For each simulation, source transfer finish time, overall transfer finish time, energy cost, 

and channel capture cost are calculated. Related simulations are graphed together to 

demonstrate trends in performance. Split TCP and TCP Reno without proxies are labeled 

in the graphs as Split and NoProxy, respectively. 
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4.1 – Validation simulations 

 

 

Figure 8 

The results for the 9-node, 10-node, and 12-node simulations are shown in Figure 8. 

Using all four metrics, the three proxy-placing protocols perform significantly better than 

NoProxy as congestion increases from the 9-node simulation to the 12-node simulation. 

Split TCP completes source transfer the earliest with its first proxy placed at the third 

node from the source. Both versions of DTCP perform better than Split TCP in overall 

transfer finish time, energy cost, and channel capture cost. Because of the differences in 

metrics collection between DTCPv1 and DTCPv2, the two protocols placed proxies 

differently in these simulations. DTCPv1 collected metrics at some unfixed time before 

communication began, while DTCPv2 always collected metrics within one round trip 

time of when communication began. As congestion increased, DTCPv2 demonstrated an 

increasing performance improvement over all other protocols in terms of energy cost and 

channel capture cost. 
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Figure 10 

The protocols placed proxies for the 9-node simulation as shown in Figure 9. The 10-node 

simulation had the same proxy placement as the 9-node simulation. DTCPv1 did not 

place the same proxies as DTCPv2 because the metrics used by DTCPv1 were collected 

during the warm up phase before metrics data had stabilized. This is the cause of 

DTCPv1 performing worse than DTCPv2 in Figure 8. Figure 10 shows the proxy 

placement for the three protocols in the 12-node simulation. 

 

Figure 11 
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The results for validating the congestion change detection and migration mechanisms are 

shown in Figure 11. DTCPv2 reacts to the change in network congestion as expected by 

migrating from a single proxy at node 7 to proxies at both node 3 and node 5. The 

congestion change occurs 10 seconds after the transfer begins. DTCPv2 detects the 

congestion change 30 seconds after the transfer begins because the metrics collection rate 

parameter is set to 30 seconds. The three other protocols do not react to the congestion 

change. In all metrics, Split TCP has the best performance and DTCPv2 is second best. 

Because Split TCP places a proxy every three nodes, it performs equally well regardless 

of where congestion is placed along the path. DTCPv1 performs worse than TCP Reno 

without proxies in overall transfer finish time. Figure 12 shows the proxy placement of all 

three protocols within the congestion change simulation. DTCPv2’s initial proxy 

placement is labeled DTCPv2 before, while its post migration proxy placement is labeled 

DTCPv2 after. 
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Figure 12 
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Figure 13 

Figure 13 shows the results of the validation simulations for path change detection and 

migration. In the simulation with a 4 node congestion zone, the DSR Route Error was 

returned to the source after 12.5 seconds. After 34 seconds, the DSR layer on the source 

received a route response for the long path. 14 seconds later, DTCPv2 returns metrics and 

performs migration. 67.5 seconds after the route failure, DTCPv2 completes proxy setup 

and migration. Compared to No Proxy, which receives its first new ACK 44 seconds after 

the path change, DTCPv2 takes longer to return to a normal state. However, DTCPv2 is 

still continuing to send during the migration time period because the current proxies are 

still connected. 

DTCPv2 performs far better than all other protocols in overall transfer finish time, energy 

cost, and channel capture cost as congestion upon the long path increases. Neither Split 

TCP nor DTCPv1 react to the path change. All three proxy-placing protocols still 
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demonstrate a significant improvement in all metrics over TCP Reno without proxies 

since all three protocols split the path by placing at least 1 proxy. 

4.2 - Variant simulations 

 

 

Figure 14 

The results in Figure 14 are for three different proxy placement algorithms simulated with 

the DTCPv2 protocol. Split DTCP is a variant of the DTCPv2 protocol using Split TCP's 

proxy placement algorithm of a proxy every 3 nodes. NUCP is a variant of DTCPv2 

which only places proxies at congestion edges. DTCPv2 and Split TCP are included for 

comparison. All four protocols are tested in the 9-node, 10-node, and 12-node validation 

simulations. 

Split DTCP performs slightly worse than Split TCP in all simulations and across all 

metrics. The difference between the two is the added overhead in the DTCPv2 protocol in 

terms of header data and metrics collection and added start up cost. Split DTCP uses 
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proxy per-segment forwarding performance improvement. Per-segment forwarding is 

demonstrated here to not be a significant performance improvement in terms of 

throughput. The Split TCP proxy placement algorithm demonstrates superior 

performance in source transfer finish time, but inferior performance in the other three 

metrics when compared to the DTCP proxy placement algorithm or the NUCP variant. 

NUCP performs equivalently to DTCPv2 in all simulations and across all metrics except 

source transfer finish time. In the 9-node and 10-node simulations, DTCPv2 places a 

proxy in the uncongested area close to the source. NUCP does not place a proxy there. 

The 12-node simulation does not have any uncongested zones large enough for proxy 

placement and NUCP and DTCPv2 perform identically in the simulation. 

 

Figure 15 

Figure 15 shows the maximum buffer sized required by all protocols in the 9-node 

simulation. DTCPv2 and Split DTCP require by far the most buffer space on the source 

because they must buffer data even after it has been locally acknowledged. DTCPv2 

slightly reduces proxy buffer space compare to DTCPv1. NUCP significantly reduces 

buffer space. 
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4.3 - Mobility simulations 

 

 

Figure 16 

Figure 16 shows the results of simulations using the probabilistic random walk mobility 

model. The graphs have the results of the three simulations with different node movement 

frequencies. The simulations are ordered with lowest frequency on the left. Note that with 

between the 2 second frequency and 1 second frequency simulations, the performance of 

all the protocols improves. This is due to the unpredictable movement of nodes causing 

the path between the source and the sink to be shorter and less congested in the 1 second 

frequency simulation than in the 2 seconds frequency simulation. 

DTCPv2 demonstrates performance equal to or superior than the other three protocols in 

terms of overall transfer finish time, energy cost, and channel capture cost. The 2 seconds 

frequency simulation illustrates what can happen to DTCPv1 when proxy drift occurs. In 

this simulation, DTCPv1 experiences only marginal performance improvement over 
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NoProxy. The proxy which DTCPv1 chose originally was the correct choice. Over time, 

proxy drift occurred and for a substantial amount of the transfer time DTCPv1's 

throughput was below that of NoProxy. Note that this can happen to Split TCP as well. 

DTCPv2 did not experience periods like this due to path change detection and migration. 

Split TCP performs well in the 2 and 1 second frequency simulations. The difference in 

performance between Split TCP and DTCPv1 is caused by the proxies chosen by Split 

TCP exhibiting localized movement around the source and sink. Split TCP did not 

complete the 5 seconds simulation because a node which was chosen as a proxy became 

disconnected. Split TCP has no way of recovering from a failure of this nature. 

During the transfer in the 1 second frequency simulation, the source and sink moved 

within direct communication distance. At this point, DTCPv2 migrated to zero proxies. 

DTCPv1 and Split TCP each had a single proxy in use which increased the number of 

hops and congestion imposed by the transfer. During the period when the source and sink 

were in direct communication, NoProxy performed better than all three proxy-placing 

protocols. It performed better than Split TCP and DTCPv1 because of the unneeded 

proxy in each protocol. It performed better than DTCPv2 because of the added header 

overhead. DTCPv2's performance was much closer to NoProxy than either Split TCP's or 

DTCPv1's performance. 
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Figure 17 

In Figure 17, the results of the simulations using the random waypoint mobility model are 

shown. Each protocol was run three times using movement patterns with 50, 30, and 15 

seconds between movement waves. Again, performance fluctuates with different 

movement frequency due to the randomness of the system. DTCPv2 demonstrates 

consistently superior performance to the three other protocols in terms of overall transfer 

finish time, energy cost, and channel capture cost. 

DTCPv2 was the only protocol to complete the 15 seconds between random waypoints 

simulation. NoProxy did not finish the transfer before the 1500 second simulation 

terminated. DTCPv1 and Split TCP protocols both broke the connection when a proxy 

became disconnected. This highlights a major flaw in both protocols. They introduce new 

points of failure into the system. In TCP, there are two points of failure, the source and 

the sink. DTCPv1 and Split TCP introduce a new point of failure for each proxy they 

place. DTCPv2 returns to a two points of failure system. 
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4.4 - NS2 Bugs 

 

During development of DTCPv2 and simulation, several bugs were found in NS2. First, 

NS2 fakes TCP segment data with a data length field. The field's value is the imaginary 

amount of data in bytes contained within the segment. This value is overwritten while in 

transport causing problems in the cumulative acknowledgements of both the default 

implementation of TCP Reno and DTCP. To resolve this issue, we added a second data 

length field to the TCP header which is not included in the header length. The value of 

the data length field is overwritten by the second data length field value whenever the 

segment is delivered to the transport layer. Calculations performed by the simulator at 

lower layers may still use incorrect values of the segment length in computation, but the 

data length field is typically only inaccurate by a few bytes. Until the bug is resolved, 

these small inaccuracies are unavoidable. 

DSR seems to exhibit self interference in conjunction with very congested links. 

Consider a transfer between a source and a sink which precedes normally along a path we 

label path A. There are one or more other paths between the source and the sink which 

have similar hop distances. Due to the lossy nature of wireless links, the MAC layer may 

drop packets even when path A is not broken. A DSR Route Error is generated and sent 

to the source of the packet. The source performs DSR route discovery to recover from a 

potentially broken path. DSR will receive a route reply first from the path which has the 

fastest round trip time. However, since the transfer between the source and the sink has 

been progressing along path A, it has become more congested than the other available 
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path(s). As a result, DSR will begin using an alternative path, path B. Again, a false 

positive DSR Route Error may be generated. Now, path B has become more congested 

than path A and DSR will begin using path A again. This flipping back and forth between 

paths is the self interference exhibited by DSR. If you include DSR route caches, the 

selection of path becomes even more random. This problem only occurs under very high 

congestion when the MAC layer cannot hide packet loss from higher layer protocols. The 

effect on DTCP is unneeded and expensive migrations. 

The MAC layer includes functionality to improve performance when large packets are 

being transferred. Packets with a length greater than a threshold value use the RTS 

(ready-to-send) and CTS (clear-to-send) protocol extension to reduce the probability of 

interference while transmitting. Sending the very small RTS packet and waiting for the 

equally small CTS packet response before transmitting improvements throughput when 

dealing with large packets since it prevents most collisions. However, it has the opposite 

effect when dealing with many smaller packets. The RTS/CTS threshold default value in 

NS2 is set to zero, meaning that the protocol extension is used with each packet. The data 

transmitted is increased and delay is added. The threshold value should be set so 

RTS/CTS are only used with packets greater than 2347 octets [Calhoun et. al., 2009]. 

 

  



57 

 

Chapter 5 – Discussion 

 

 

During all simulations of the DTCPv2 protocol, we made several observations about its 

functionality. First, when a proxy is not placed correctly to balance the throughput of the 

local connections on either side it, the proxy buffer size can grow extremely large. When 

the rate at which the proxy receives data is approximately equal to the rate at which it 

sends data, the buffer remains small and the proxy performs optimally. Balancing the 

rates of the local connections on either side of a proxy is done placing proxies more 

frequently in and around zones of high congestion. NUCP reduces buffer space the 

largest amount, demonstrating how well balanced TCP throughputs on the local 

connections effectively maintain small proxy buffers. DTCP proxy buffers were typically 

smaller than or equal in size to the buffers of proxies placed using the Split TCP proxy 

placement algorithm. While per-segment forwarding was demonstrated to have no 

benefits in terms of throughput, it decreases the amount of buffer space required by 

proxies. Combining congestion aware proxy placement with per-segment forwarding, 

DTCPv2 decreases the buffer space requirement of proxies. Since the buffer is the major 

cost of a proxy, this represents a significant reduction in the overhead imposed on nodes 

by DTCP. As the number of proxies increases, the reduction in buffer space becomes 

more important. 

With the inclusion of global acknowledgements, a DTCPv2 source has to buffer data 

which has already been acknowledged by a proxy but has not yet been acknowledged by 

the sink. The source buffer size in DTCPv2 was always larger than the source buffer in 
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DTCPv1 or Split TCP. It was at times larger than the buffer maintained by the source in 

TCP Reno without proxies. Since GACKs may be delayed at proxies for coalescing and 

piggybacking, a GACK takes longer to be received by the source than a TCP Reno ACK 

from the sink. DTCPv2 requires more buffer space on the source than any of the other 

protocols tested. 

Even with congestion aware proxy placement, a perfect balance of throughput between 

local connections is not always possible. Rate throttling should be used to insure that 

proxy buffers do not grow too large. Rate throttling would have no effect on overall 

transfer finish time and throughput. The source transfer finish time would increase as 

would the channel capture cost since the send rate of the source would be limited to the 

send rate of the bottleneck local connection. However, both of these metrics have flaws. 

As mentioned previously, source transfer finish time does not offer any insight into 

overall performance. Channel capture cost only considers the time period during which a 

transfer is utilizing a link and not the amount of available bandwidth the transfer is using. 

A transfer which utilizes 100% of the available bandwidth for 10 seconds would have a 

lower channel capture cost than a transfer which utilizes 10% of the available bandwidth 

for 100 seconds even though both consume the same total amount of network resources. 

In networks with low congestion, the former is clearly advantageous since it completes 

the transfer quicker. While in networks with competing traffic and congestion, a protocol 

which shares bandwidth and does not over saturate links is advantageous. The above 

example suggests that the channel cost metric is flawed. The energy cost metric is a better 

representation of the congestion cost of a transfer upon the network. 
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DTCPv2 experiences a period of reduced throughput during migration. The three main 

expenses of migration are the time required by Dynamic Source Routing (DSR) to 

perform route discovery, DTCP metrics collection, and TCP slow start. Note that DSR 

route discovery must be performed regardless of whether migration is performed. Also, a 

path change will in most cases coincide with one or more TCP loss events. Either TCP 

fast recovery in the case of three duplicate ACKs or TCP slow start will occur. 

Considering how long DSR route discovery took in simulation, a TCP timeout and slow 

start is far more likely than three duplicate ACKs. Therefore, the most significant factor 

in migration performance is the round trip time required to collect metrics upon the new 

path. This is confirmed by simulation which shows that DTCPv2 returns to normal state 

after migration only marginally slower than the protocols return to normal state after the 

path breaks. 

DTCPv2 has a higher cost in terms of DSR route discovery operations than the other 

three protocols. Whenever the path is broken, a DSR route discovery is performed 

between the source and the sink. Additionally, a DSR route discovery is performed by the 

source or a proxy along the old path. The second DSR route discovery is used to flush 

any buffered data and send the FIN segment to clean up. When a path is broken in 

DTCPv1, Split TCP, or TCP Reno without proxies only a single DSR route discovery is 

performed. DSR route discoveries can be expensive operations since they are broadcast. 

While DTCPv2 increases the amount of header data at the transport layer by adding TCP 

header options, it reduces the amount of header data at the network layer. Using DSR and 

TCP Reno without proxies, the entire path from the source to the sink must be in the DSR 

header of each packet sent by either the source or the sink. When proxies are used, the 
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path is broken up so only small chunks of the path must be in the DSR header of each 

packet. The DTCP header is 12 bytes and, assuming IPv4, each address in the DSR 

header is 4 bytes. DTCP pays for its own header if it can reduce the number of addresses 

in the DSR header by three. 

5.1 - Validation simulations 

 

The 9-node, 10-node, and 12-node validation simulations clearly demonstrate the 

potential of DTCP to improve throughput while reducing congestion and energy 

consumption. Further, the revised metrics collection policy added to DTCPv2 is more 

reliable in an environment with stabilized metrics than the metrics collection policy of 

DTCPv1. Metrics collected by DTCPv2 are always less stale than those collected by 

DTCPv1. It follows that DTCPv2 metrics collection will likely perform better than 

DTCPv1 metrics collection in an environment where metrics data is constantly changing. 

In the congestion change simulation, the proxy placement performed by DTCPv1 reduces 

throughput once the congestion change occurs. DTCPv1 performs worse than TCP Reno 

without proxies. Split TCP demonstrates robustness to congestion change along the path 

and has the best results of the protocols tested. This should be expected since Split TCP 

places proxies equally along the entire path; it does not matter where the congestion is 

located. The time required by migration and the overhead of congestion change detection 

within DTCPv2 are the source of its reduced performance compared to Split TCP. Note 

that both of these protocols place similar numbers of proxies. If the path were longer with 

more uncongested zones, DTCPv2 may have lower overhead in terms of number of 

proxies placed. However, in scenarios with short paths and frequent congestion change, a 
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congestion unaware proxy placement has less overhead than a congestion aware proxy 

placement and performs equivalently. 

 

5.2 - Variant simulations 

 

The NUCP variant performs equivalently to DTCP in all metrics showing that the added 

proxies in uncongested zones have no effect on throughput or congestion. However, the 

idealized simulations do not consider congestion change. In the previous validation 

simulation on congestion change, proxies in uncongested zones were shown to serve an 

important purpose. DTCP must be able to react immediately to congestion change to 

perform better than Split TCP. Considering the current conservative value for the metrics 

collection rate parameter, it is highly probable that DTCP's congestion change reaction 

time can be improve to match performance with Split TCP. If so, then NUCP variant is 

preferable for reducing overhead. 

An alternative protocol would build off of Split TCP and add path change detection. The 

protocol would remain congestion unaware. The theoretical protocol would have 

equivalent performance to Split TCP in static networks and worse than DTCP 

performance. In a network with rapidly changing congestion, the alternative protocol may 

perform better than NUCP. 

 

5.3 - Mobility simulations 
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The results of the mobility simulations show that DTCPv2 does not suffer from proxy 

drift like DTCPv1 and Split TCP. While DTCPv1 and Split TCP frequently perform 

worse than NoProxy, DTCPv2 consistently performs better than NoProxy. The results 

show that DTCPv2 is a valid protocol choice for ad hoc wireless networks with mobile 

nodes and any level of congestion. DTCPv2 improves throughput of the file transfer 

while reducing congestion and energy consumption. The former is evidenced by the 

reduction in overall transfer finish time. The later is evidenced by the reduction in energy 

cost. DTCPv2 does this while maintaining TCP end-to-end semantics which are not 

available in either DTCPv1 or Split TCP. 

The DTCPv2 protocol can co-exist with non-DTCP supporting nodes. Its requires that 

both the source and the sink support DTCP. Non-DTCP supporting nodes will not attach 

metrics to DTCP segments with the MREQ flag set and will not be part of DTCP's 

knowledge of the path and will not be eligible to be proxies. Note that non-DTCP 

supporting nodes along the path potentially hurt performance by preventing optimal 

proxy placement. DTCP can co-exist with TCP since TCP congestion avoidance is 

unchanged. 

 

5.4 – Security 

 

DTCPv2 introduces several new states and operations on top of TCP. As a result, new 

attacks may exist against the protocol and existing attacks may become more damaging. 

We performed a brief survey of malicious attacks against DTCPv2. First, all DTCP-

enabled nodes will set up a proxy when their address appears in the proxy list of a DTCP 
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SYN segment. An attacker could use this to expend the resources of a node. This is 

analogous to SYN flooding a TCP port in the LISTEN state. However, an attacker can 

exponentially increase the resources expended by picking a circuitous path and selecting 

all nodes on the path as proxies. Each node will maintain two TCP states while the 

attacker only maintains a single TCP state for the entire path. This attack can be mitigated 

by the same methods as SYN flooding but is more damaging. Note that DTCPv1 and 

Split TCP are also exposed to the attack. 

Spoofing the source of a DTCP session can now be done by claiming to act as a proxy for 

the source. However, assuming the DSR protocol is in use, faking the path back to the 

source was already a possible way to spoof the source of a TCP session. DTCP 

introduces a new way to spoof the source, but does not alter the reality of it already being 

possible. The best way to mitigate spoofing is through authentication which is equally 

effective against DTCP proxy spoofing and DSR path spoofing. 

The sink of a DTCP connection will migrate in all states except the closing states when it 

receives a SYN segment. The SYN segment must have the correct flow id. Effectively, 

any attacker able to overhear the flow id can perform an insertion attack, if the global 

sequence number is known, or break the connection. With the nature of wireless 

communication, it is very easy to overhear the flow id. If a node can overhear the flow id 

and global sequence number, it can also overhear local sequence numbers. Insertion 

attacks are already possible against TCP in ad hoc networks with knowledge of the 

sequence number. Using the DSR protocol, a malicious node can create a new segment 

and fake that it was received from the source and forwarded to the sink. The segment 

either contains data and results in an insertion attack or breaks the connection. DTCPv2 
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introduces a new method to perform insertion attacks, but the new method is no more 

viable than existing methods. 
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Chapter 6 – Conclusion 

 

 

Previous research in DTCP showed the potential of congestion aware proxy placement to 

improve TCP throughput and reduce congestion in ad hoc networks. However, proxies 

harm performance in mobile networks by locking the connection to the nodes where 

proxies are placed. DTCPv2 enables proxy migration removing the lock. Through 

simulation, we showed that DTCPv2 has the same benefits as DTCPv1 in static ad hoc 

networks. DTCPv2 also improves throughput and reduces congestion in mobile ad hoc 

networks. 

DTCPv2 improves over DTCPv1 with a new metrics collection policy which insures 

more accurate proxy placement. It can also update the proxy placement as congestion 

changes to maintain the benefits having proxies. DTCPv2 reduces the cost of proxies by 

reducing their buffer space requirement using out-of-order segment forwarding. Finally, 

DTCPv2 reintroduces TCP end-to-end semantics which are lost in other proxy-placing 

protocols. In all simulations and by all four metrics, DTCPv2’s performance was no 

worse than DTCPv1. It often performs better. 

All simulations were performed with the Dynamic Source Routing (DSR) protocol. We 

found that DTCPv2 reacts to path changes in equivalent time to TCP Reno timeout. This 

suggests that DTCPv2 can handle as frequent node movement as DSR can handle. 

DTCPv2 throughput is likely to remain better than alternative protocols up to the point of 

mobility breakdown. 
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When congestion upon the network is very high, DSR exhibit self-interfering behavior 

causing frequent path unneeded path changes. This is particularly true when DSR route 

caches short circuit route discovery. Unfortunately, each path changes causes a DTCPv2 

migration at the transport layer significantly reducing throughput. DSR self-interference 

was only observed at very high levels of congestion. For this reason, DTCPv2 does not 

perform well when congestion is very high. DTCPv2 may perform better with other 

network layer protocols in highly congested networks. 

Due to the overhead of metrics collection, proxy setup, and header additions, DTCPv2 is 

not recommended for short-term transfers. In very short-term transfers, DTCPv2 will 

perform worse than TCP Reno. In our simulations, a 1.44MB transfer was sufficiently 

large for DTCPv2 use to be beneficial. DTCPv2 is best used in an environment where 

congestion is present and nodes frequently move. It has been demonstrated to provide an 

increasing return as the hop distance of the transfer increases. Therefore, DTCPv2 is 

recommended for large transfers in MANETs where congestion is moderate, nodes are 

highly mobile, and the network size is large. When there is no network congestion, 

DTCPv2 and other proxy-placing protocols still improve throughput, but it is only 

marginally better than the throughput of TCP Reno. 

Because DTCPv2 is not always beneficial, we recommend its implementation in real 

world protocol stacks as a socket option. Applications which intend to perform large 

transfers over MANETs may turn on the socket option while all other traffic will leave it 

off. 
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Chapter 7 - Future work 

 

 

Global retransmits are unique in that there is both a single point during operation where 

they are necessary and a bound on how much data must be retransmitted. Global 

retransmissions are only needed after migration if one or more proxies lose connectivity 

or go done. This is a rare case in migration with node movement being the cause much 

more frequently. Also, since data sent after migration is guaranteed to be delivered, the 

only data which must be retransmitted is the global sequence number (GSEQNUM) 

greater than the most recent global acknowledgement (GACK) through the last 

GSEQNUM sent before migration. DTCP uses a large number of duplicate GACKs, 20, 

to detect data loss during migration. The potential result is a very long delay in delivering 

data to the application at the sink. The number of duplicate GACKs is very large because 

duplicate GACKs are created by local ACKs. When several local ACKs are sent by a 

proxy without an updated GACK, the segments are interpreted as duplicate GACKs by 

the source. A method of distinguishing between GACKs sent by the sink and duplicates 

created by proxies should be added to the protocol. 

DTCP is handicapped when congestion changes more rapidly than the metrics data is 

queried. Since metrics collection requires one round trip time and migration requires TCP 

slow start, reacting to changes in congestion by migrating is not always advisable. 

Temporal congestion changes or mild congestion should not cause migration. In the 

simulations, Split TCP was shown to perform well under changing congestion by placing 

proxies uniformly along the path. A hybrid protocol which places proxies infrequently in 
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uncongested areas and delays migration until it ascertains that the congestion change is 

not temporary will likely perform better than either DTCPv2 or Split TCP. The proxies 

placed in uncongested areas will capture sporadic congestion and eventual migration will 

capture the addition or removal of long term transfers to network congestion. 

A potential problem arises for the DTCP protocol when proxies have buffered data and 

the sender no longer has any data to send. In this situation, performing migrations to 

adjust for congestion change and path change is wasteful since at the least the first local 

connection will never be used. A policy which defers migration to only the local 

connections still in use would be less costly. To enable this policy change, the source 

must send a notification when it no longer has any data to send, a local FIN. The proxy 

which receives the local FIN would takeover congestion change detection and path 

change detection. Once the proxy empties its own buffer, it would forward the local FIN 

to the next proxy which repeats the operations. Note that this mechanism may not be 

necessary if rate throttling successfully maintains low proxy buffer size. 

Because DTCPv2 causes congestion and reacts to congestion there is the potential for self 

interference. Is two DTCPv2 transfer follow the hops and one of the transfers migrates 

proxies, the congestion edges observed by the other transfer may migrate along with the 

proxies. The best resolution to this problem is a migration threshold which prevents the 

congestion caused by a single transfer from causing migration. If the migration threshold 

is high enough, we can avoid self interference all together. 

We have observed that the extra round trip time required by DTCPv2 to collect metrics is 

the primary factor limiting DTCPv2 performance against other protocols during startup 
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and path changes. Several more dynamic ways of setting up proxies exist and should be 

further researched. First, we can combine metrics collection and proxy setup into TCP 

three-way handshake if nodes make a bid to become proxies. On the SYN segment, each 

potential proxy creates a dummy TCP state and attaches end point data to the SYN. On 

the SYN+ACK, the data is returned to the source which then chooses proxies and assigns 

them on the ACK segment. Another method would have proxies assign themselves on the 

SYN segment. Assuming each node has a method for collecting the metrics of nodes 

adjacent to it on the path, nodes assign themselves if they are on a congestion edge. To 

place proxies at regular intervals in uncongested zones, the node can use the route in the 

DSR header to determine the hop distance to the previous proxy. Proxy setup is 

completed entirely during the transmission of the SYN segment to the sink. 
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Appendix 

 

Proxy Selection Algorithm 
procedure proxy_selection_alg( M : metrics for nodes along the path ) 

defined as: 

  // place proxies at congestion edges 

  for each i in 0 to length(M) 

 j = i+1 

 metrics1 = M[i].RT + M[i].TQ 

 metrics2 = M[j].RT + M[j].TQ 

 if metrics1 - metrics2 >= DIFFERENCE_THRESHOLD 

  M[j] is a proxy 

 else if metrics2 – metrics1 >= DIFFERENCE_THRESHOLD 

  M[i] is a proxy 

 end if 

  end for 

  

  // fill proxies empty areas of 5 or more non-proxies 

  do 

add_proxy = false; //assume this round will done the proxy  

 //selection 

 first = 0; 

 second = 0; 

 for each i in 1 to length(M) 

  if M[i] is a proxy 

   second = i; 

   if second - first > 6 

   // select a middle node as proxy 

    M[first + (second - first)/2] = 1;  

   end if 

   if ((second - first)/2 + 1 > 6) 

   //can add another proxy next to the one just added 

    add_proxy = true; 

   end if  

   first = second; 

  end if 

 end for 

  while add_proxy 

end procedure 

 

Conditional Migration Algorithm 
procedure cond_migrat_alg( M : metrics for nodes along the path ) 

defined as:  

 

 // M includes the current proxy placement  

 // NEW has the updated proxy placement if we migrate 

 newM = proxy_selection_alg(M); 

 

 newM_min_throughput = MAX_THROUGHPUT; 

 currentM_min_throughput = MAX_THROUGHPUT; 

 newM_DR = 0; 

 currentM_DR = 0; 

 newM_TQRT = 0; 

 currentM_TQRT = 0; 

 

 // Compute the throughput of each local connection 
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 // to find the minimum throughput local connection 

 // for both the current M and new M 

 for each i in 0 length(M) 

  

  // Equation 7 

  newM_DR = newM_DR + M[i].dr - (newM_DR * M[i].dr); 

  currentM_DR = currentM_DR + M[i].dr - (currentM_DR * M[i].dr); 

  // Equation 3 and Equation 4 

  newM_TQRT += M[i].tq + M[i].rt; 

  currentM_TQRT += M[i].tq + M[i].rt; 

 

    if i is a proxy in new proxy placement 

      // Equation 2 

 throughput = (1.22 * MSS) / (newM_TQRT * sqrt(newM_DR)); 

  // Found new minimum 

if throughput < newM_min_throughput 

        newM_min_throughput = throughput; 

    end if 

 // Reset for new local connection 

 newM_TQRT = 0; 

 newM_DR = 0; 

    end if 

 

    if i is a proxy in current proxy placement 

// Equation 2 

 throughput = (1.22 * MSS) / (currentM_TQRT * sqrt(currentM_DR)); 

  // Found new minimum 

if throughput < currentM_min_throughput 

    currentM_min_throughput = throughput; 

  end if 

 // Reset for new local connection 

 currentM_TQRT = 0; 

 currentM_DR = 0; 

    end if 

 end for 

  

 if newM_min_throughput > currentM_min_throughput + THRESHOLD 

  MIGRATE 

 end if 

end procedure 

Wireless Model Parameters 
Antenna/OmniAntenna set Gt_ 1 //Transmit antenna gain 

Antenna/OmniAntenna set Gr_ 1 //Receive antenna gain 

Phy/WirelessPhy set L_ 1.0 //System Loss Factor 

Phy/WirelessPhy set freq_ 2.472e9 //channel-13. 2.472GHz 

Phy/WirelessPhy set bandwidth_ 11Mb //Data Rate 

Phy/WirelessPhy set Pt_ 0.031622777 //Transmit Power 

Phy/WirelessPhy set CPThresh_ 10.0 //Collision Threshold 

Phy/WirelessPhy set CSThresh_ 5.011872e-12 //Carrier Sense Power 

Phy/WirelessPhy set RXThresh_ 5.82587e-09 //Receive Power Threshold;  

Mac/802_11 set dataRate_ 11Mb //Rate for Data Frames 

Mac/802_11 set basicRate_ 1Mb 
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