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ABSTRACT
A significant fraction of Internet traffic is now encrypted
and HTTPS will likely be the default in HTTP/2. How-
ever, Transport Layer Security (TLS), the standard pro-
tocol for encryption in the Internet, assumes that all
functionality resides at the endpoints, making it impos-
sible to use in-network services that optimize network
resource usage, improve user experience, and protect
clients and servers from security threats. Re-introducing
in-network functionality into TLS sessions today is done
through hacks, often weakening overall security.

In this paper we introduce multi-context TLS (mcTLS),
which extends TLS to support middleboxes. mcTLS
breaks the current“all-or-nothing”security model by al-
lowing endpoints and content providers to explicitly in-
troduce middleboxes in secure end-to-end sessions while
controlling which parts of the data they can read or
write.

We evaluate a prototype mcTLS implementation in
both controlled and “live” experiments, showing that its
benefits come at the cost of minimal overhead. More
importantly, we show that mcTLS can be incremen-
tally deployed and requires only small changes to client,
server, and middlebox software.
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1. INTRODUCTION
The increased personalization of Internet services and

rising concern over users’ privacy on the Internet has
led to a number of services (e.g., Facebook, Twitter,
and Google) offering access solely over HTTPS. HTTPS
currently accounts for a significant portion of all Inter-
net traffic (40% in [26], and estimated to grow at 40%
every 6 months [27]). Transport Layer Security (TLS),
which underlies HTTPS, has become the standard for
end-to-end encryption on the web because it ensures (i)
entity authentication, (ii) data secrecy, and (iii) data
integrity and authentication. Moreover, it will likely be
the default transport protocol for HTTP/2.

This is good news for privacy. However, TLS makes a
fundamental assumption: all functionality must reside
at the endpoints. In reality, Internet sessions are aug-
mented by functional units along the path, providing
services like intrusion detection, caching, parental filter-
ing, content optimization (e.g., compression, transcod-
ing), or compliance to corporate practices in enterprise
environments. These functional units, often referred to
as middleboxes, offer many benefits to users, content
providers, and network operators, as evidenced by their
widespread deployment in today’s Internet.

While there are arguments that these services could
(and should) be implemented on endpoints, we argue
that this is often not optimal or even possible. First,
although an in-network implementation might not be
required, it might be inherently more effective than an
endpoint-based one (e.g., thousands of users sharing
an ISP cache). Second, there might be practical rea-
sons why such a solution needs to reside in-network
(e.g., virus scanners can always be up-to-date and im-
mediately protect all clients). Third, certain features
(e.g., intrusion detection or content-based routing deci-
sions) simply cannot be implemented without network-
wide visibility. Finally, in-network services can lead to
increased competition, innovation, and choice for end
users.

Recently, industrial efforts—one by Ericsson and AT&T
[20] and one by Google [28]—have tried to provide a so-



lution for combining encryption with the richness of to-
day’s in-network services. However, as we will discuss, a
good solution is still lacking and the topic is still active
within the GSMA ENCRY and the IETF httpbis.

In this paper we present mcTLS, a protocol that builds
on top of TLS to allow endpoints to explicitly and se-
curely include in-network functionality with complete
visibility and control. mcTLS: (i) provides endpoints
explicit knowledge and control over which functional el-
ements are part of the session, (ii) allows users and con-
tent providers to dynamically choose which portions of
content are exposed to in-network services (e.g., HTTP
headers vs. content), (iii) protects the authenticity and
integrity of data while still enabling modifications by se-
lected in-network services by separating read and write
permissions, and (iv) is incrementally deployable.

We implemented mcTLS as a simple extension to the
OpenSSL library. Our evaluation shows that mcTLS
has negligible impact on page load time or data over-
head for loading the top 500 Alexa sites and incorporat-
ing mcTLS into applications is relatively easy in many
cases.

Our contributions are as follows: (i) a practical ex-
tension to TLS that explicitly introduces trusted in-
network elements into secure sessions with the mini-
mum level of access they need, (ii) a prototype imple-
mentation of mcTLS tested in controlled and live envi-
ronments (our implementation is available online [1]),
(iii) an efficient fine-grained access control mechanism
which we show comes at very low cost, and (iv) strate-
gies for using mcTLS to address concrete, relevant use
cases, many of which can immediately benefit applica-
tions with little effort using mcTLS’s most basic config-
uration.

2. MIDDLEBOXES AND ENCRYPTION
It is clear that there is both a growing interest in user

privacy and a widespread use of in-network processing
in the Internet. In this section, we describe middleboxes
and why it is beneficial to keep them around as the
Internet moves toward ubiquitous encryption. We then
explain why it is difficult to do so with TLS.

2.1 Middleboxes
Middleboxes are services that run “inside” the net-

work, sitting logically between the endpoints of commu-
nication sessions. A client (e.g., web browser) can con-
nect to a server (e.g., web server) via one or more mid-
dleboxes that add value beyond basic data transport.
Clients and servers are endpoints; users own/manage
clients and content providers own/manage servers. The
entire communication, across all parties, is a session;
connections link individual hops in the session (e.g., a
TCP connection between the client and a middlebox).

Our focus is on application level middleboxes, also
called proxies or in-path services, which we loosely de-

Request Response
Headers Body Headers Body

Cache ◦ • •
Compression • •

Load Balancer ◦
IDS ◦ ◦ ◦ ◦

Parental Filter ◦
Tracker Blocker • •

Packet Pacer ◦
WAN Optimizer ◦ ◦ ◦ ◦

(• = read/write; ◦ = read-only)

Table 1: Examples of app-layer middleboxes and the
permissions they need for HTTP. No middlebox needs
read/write access to all of the data.

fine as middleboxes that access application data, like
intrusion detection systems (IDSes), content filters, and
caching/compression proxies (see Table 1).

Middleboxes are sometimes viewed as undesirable.
One reason is privacy concerns, which we address later.
Another is that they violate the original Internet archi-
tecture, which places all functionality (transport and
up) at the endpoints, a design motivated by the end-to-
end principle [31]. However, the Internet has changed
dramatically: both connectivity and content services
are commercially supported, security is a major con-
cern, performance expectations are much higher, the
technology is more complex, and users are typically
not in a position to manage it. As a result, the de-
cision of where to place functionality depends on more
than just technical concerns and, increasingly, “inside
the network” is a good solution.

Middleboxes are useful: Providing processing and
storage in the network has proven to be an effective
way to help users, content providers, and network op-
erators alike. For example, techniques such as caching,
compression, prefetching, packet pacing, and reformat-
ting improve load times for users [38, 18], reduce data
usage for operators and users [3, 26, 13, 37, 29], and re-
duce energy consumption on the client [26, 12, 29, 14].
Middleboxes can also add functionality not provided by
the endpoints, such as virus scanners in enterprises or
content filters for children.

In-network may be better: First, functions such as
caching and packet pacing are inherently more effective
in the network [13, 12, 14]. Second, client implemen-
tations may be problematic because the client may be
untrusted or its software, URL blacklists, virus signa-
tures, etc. may be out-of-date (e.g., only a third of
Android users run the latest version of the OS and over
half are more than two years out of date [2]). Finally,
users may trust a middlebox more than the application;
for example, apps can unexpectedly leak personal infor-
mation to a server [36], so users may want a middlebox
to act as a watchdog.



They are widely used: In a 2012 survey of network
operators, networks of all sizes reported having roughly
as many middleboxes as L3 routers [33]. For web prox-
ies in particular, 14% of Netalyzer sessions show evi-
dence of a proxy [35] and all four major U.S. mobile
carriers use proxies—connections to the top 100 Alexa
sites are all proxied, with the exception of YouTube on
T-Mobile [38]. In addition, all actors in the Internet
use middleboxes. They are widely deployed in client
networks (e.g., enterprise firewalls, cellular networks),
and of the three IETF RFCs on using middleboxes with
TLS, two are led by operators [20, 18] and one by a con-
tent provider [28]. Given this investment, middleboxes
are unlikely to go away, so we need a clean, secure way
to include them in encrypted sessions.

The Internet is a market-driven ecosystem: The
Internet is not a centrally managed monopoly but is a
market-driven ecosystem with many actors making in-
dependent decisions. For example, while servers can
compress data, many only do so selectively [29]. Simi-
larly, content providers may decide not to support device-
specific content formatting but instead rely on third
party providers, which can be selected by the client or
content provider. For functions such as content filtering,
clients may decide to pay for the convenience of hav-
ing a single middlebox provider of their choice, instead
of relying on individual content providers. Enterprise
networks may similarly decide to outsource functional-
ity [33]. Fundamentally, middleboxes give actors more
choices, which leads to competition and innovation.

The bottom line is simple: just like end-to-end en-
cryption, middleboxes are an integral, useful part of the
Internet and they are here to stay.

2.2 Middleboxes and TLS
Given these trends, it is natural to want the best of

both worlds. Before discussing how middleboxes and
encryption can be used together today, let us take a
closer look at Transport Layer Security (TLS) [11], the
standard protocol for secure network communications.

What does TLS give us? TLS comprises two pro-
tocols, a handshake protocol for session establishment
and a record protocol for data exchange, which together
realize three security properties:

(1) Entity Authentication: During the handshake, the
client authenticates the server by verifying that a valid
certificate links the server’s domain name and public
key. Clients can also authenticate themselves to the
server with certificates, but this is rarely used; client au-
thentication typically happens in the application layer,
e.g., using a password.

(2) Data Secrecy: The endpoints establish a symmetric
session key during the handshake, which is used by the
record protocol to encrypt/decrypt records (blocks of
application data).

(3) Data Integrity & Authentication: The session key
is also used to generate a message authentication code
(MAC) for each record; a valid MAC indicates that (1)
the data originated from the other endpoint (authen-
ticity) and (2) the data was not changed in flight (in-
tegrity).

How do you add a middlebox to a TLS ses-
sion? In short: you do not. By design, TLS supports
secure communication between exactly two parties. De-
spite this, middleboxes are frequently inserted in TLS
sessions, but this has to be done transparently to TLS.
Consider an enterprise network that wants to insert a
virus scanner in all employee sessions. A common solu-
tion is to install a custom root certificate on the client.
The middlebox can then create a certificate for itself
purported to be from the intended server and sign it
with the custom root certificate. After the client con-
nects to the middlebox, the middlebox connects to the
server and passes the data from one connection to the
other. We refer to this as Split TLS ) and it gives rise
to several problems:

(i) There is no mechanism for authenticating the mid-
dlebox. Even worse, the middlebox is completely trans-
parent to the server, and while users can inspect the cer-
tificate chain to check who signed the certificate, very
few do that or understand the difference. Moreover,
even if they do, they have no information about what
functions the middlebox performs.

(ii) The client has no guarantees beyond the first hop.
While the connection to the middlebox is encrypted,
the client cannot verify that TLS is being used from
the middlebox to the server, whether additional middle-
boxes are present, or (depending on what application-
level authentication is used) whether the endpoint of
the session is even the intended server. The user needs
to completely trust the middlebox, which he did not
select and may not even know exists.

(iii) Middleboxes get full read/write access to the data
stream. Middleboxes can read and modify any data
transmitted and received over TLS sessions despite the
fact that many middleboxes only need selective access
to the data stream (Table 1).

Given these problems, it should not be a surprise that
users are concerned about (transparent) middleboxes.
One could even argue that using TLS with a middlebox
is worse than not using TLS at all [7], since clients and
servers are under the illusion that they have a secure
session, while some of the expected security properties
do not actually hold. In the next section, we propose a
protocol based on TLS that explicitly supports middle-
boxes and addresses the above problems.



3. MULTI-CONTEXT TLS (mcTLS)
This section presents the design of multi-context TLS

(mcTLS), which augments TLS with the ability to se-
curely introduce trusted middleboxes. Middleboxes are
trusted in the sense that they have to be inserted explic-
itly by either the client or the server, at both endpoints’
consent. We first summarize our design requirements,
then introduce the key ideas, and finally describe the
key components of the protocol. A more detailed de-
scription of mcTLS is available online [1].

3.1 Protocol Requirements
First, we require mcTLS to maintain the properties

provided by TLS (extended to apply to middleboxes):

R1: Entity Authentication Endpoints should be
able to authenticate each other and all middleboxes.
Similar to TLS usage today, we expect that clients will
authenticate all entities in the session, but servers may
prefer not to (e.g., to reduce overhead).

R2: Data Secrecy Only the endpoints and trusted
middleboxes can read or write the data.

R3: Data Integrity & Authentication All mem-
bers of the session must be able to detect in-flight mod-
ifications by unauthorized third parties, and endpoints
must be able to check whether the data was originated
by the other endpoint (vs. having been modified by a
trusted middlebox).

Second, the introduction of middleboxes brings with it
two entirely new requirements:

R4: Explicit Control & Visibility The protocol
must ensure that trusted middleboxes are added to the
session at the consent of both endpoints. Endpoints
must always be able to see all trusted middleboxes in
the session.

R5: Least Privilege In keeping with the principle
of least privilege [32], middleboxes should be given the
minimum level of access required to do their jobs [24,
19]. Middleboxes should have access only to the portion
of the data stream relevant to their function; if that
function does not require modifying the data, access
should be read-only.

Finally, our protocol should meet all five requirements
without substantial overhead, e.g., in terms of latency,
data usage, computation, connection state, burden on
users or administrators, etc.

3.2 Threat Model
A successfully negotiated mcTLS session meets the

above requirements in the face of computationally
bounded network attackers that can intercept, alter,
drop, or insert packets during any phase of the session.
Like TLS, mcTLS does not prevent denial of service.

We assume that all participants in an mcTLS ses-
sion execute the protocol correctly and do not share
information out-of-band. For example, the client could
share keys with a middlebox not approved by the server,
or middleboxes could collude to escalate their permis-
sions. We do not consider such attacks because no pro-
tocol (including TLS) can prevent a party from shar-
ing session keys out-of-band. Furthermore, such attacks
are unlikely since at least two colluding parties would
need to run a malicious mcTLS implementation. Major
browsers and Web servers (especially open source ones)
are unlikely to do this, since they would almost surely
be caught. Mobile apps using HTTP would need to
implement HTTP themselves instead of using the plat-
form’s (honest) HTTP library, which is unlikely. If it is
essential to know that parties have not shared keys with
unauthorized parties, some sort of remote attestation is
the most promising solution.

Finally, even when all parties are honest, adding more
entities to a session necessarily increases the attack sur-
face: a bug or misconfiguration on any one could com-
promise the session. This risk is inherent in the prob-
lem, not any particular solution.

3.3 Design Overview
To satisfy the five design requirements, we add two

key features to TLS:

(1) Encryption Contexts (R2, R3, R5) In TLS,
there are only two parties, so it makes no sense to
restrict one party’s access to part of the data. With
trusted middleboxes, however, the endpoints may wish
to limit a middlebox’s access to only a portion of the
data or grant it read-only access. To make this possible,
mcTLS introduces the notion of encryption contexts, or
contexts, to TLS. An encryption context is simply a
set of symmetric encryption and message authentica-
tion code (MAC) keys for controlling who can read and
write the data sent in that context (§3.4). Applications
can associate each context with a purpose (opaque to
mcTLS itself) and access permissions for each middle-
box. For instance, web browsers/servers could use one
context for HTTP headers and another for content. We
describe several strategies for using contexts in §4.2.

(2) Contributory Context Keys (R1, R4) The
client and server each perform a key exchange with each
middlebox after verifying the middleboxes’ certificates
if they choose to (R1). Next, the endpoints each gen-
erate half of every context key and send to each mid-
dlebox the half-keys for the contexts to which it has ac-
cess, encrypted with the symmetric keys derived above.
The middlebox only gains access to a context if it re-
ceives both halves of the key, ensuring that the client
and server are both aware of each middlebox and agree
on its access permissions (R4). The server may relin-
quish this control to avoid extra computation if it wishes
(§3.6).



3.4 The mcTLS Record Protocol
The TLS record protocol takes data from higher

layers (e.g., the application), breaks it into “manage-
able” blocks, optionally compresses, encrypts, and then
MAC-protects each block, and finally transmits the
blocks. mcTLS works much the same way, though each
mcTLS record contains only data associated with a sin-
gle context; we add a one byte context ID to the TLS
record format. Record sequence numbers are global
across contexts to ensure the correct ordering of all ap-
plication data at the client and server and to prevent
an adversary from deleting an entire record undetected.
Any of the standard encryption and MAC algorithms
supported by TLS can be used to protect records in
mcTLS. (So, details like the order of encryption and
MAC depend on the cipher suite; mcTLS makes no
changes here.)

Building on [24, 25], mcTLS manages access to each
context by controlling which middleboxes are given
which context keys. For each context, there are four
relevant parties, listed in decreasing order of privilege:
endpoints (client and server), writers (middleboxes with
write access to the context), readers (middleboxes with
read-only access to the context), and third parties (blan-
ket term for middleboxes with no access to the context,
attackers, and bit flips during transmission). Changes
by writers are legal modifications and changes by read-
ers and third parties are illegal modifications. mcTLS
achieves the following three access control properties:

(1) Endpoints can limit read access to a context to
writers and readers only.

(2) Endpoints can detect legal and illegal
modifications.

(3) Writers can detect illegal modifications.

Controlling Read Access Each context has its own
encryption key (called Kreaders, described below). Pos-
session of this key constitutes read access, so mcTLS can
prevent a middlebox from reading a context by with-
holding that context’s key.

Controlling Write Access Write access is controlled
by limiting who can generate a valid MAC. mcTLS
takes the following “endpoint-writer-reader” approach
to MACs. Each mcTLS record carries three keyed
MACs, generated with keys Kendpoints (shared by end-
points), Kwriters (shared by endpoints and writers), and
Kreaders (shared by endpoints, writers, and readers).
Each context has its own Kwriters and Kreaders but
there is only one Kendpoints for the session since the
endpoints have access to all contexts.

Generating MACs

• When an endpoint assembles a record, it includes
three MACs, one with each key.
• When a writer modifies a record, it generates new

MACs with Kwriters and Kreaders and simply for-
wards the original Kendpoints MAC.

• When a reader forwards a record, it leaves all
three MACs unmodified.

Checking MACs

• When an endpoint receives a record, it checks the
Kwriters MAC to confirm that no illegal modifica-
tions were made and it checks the Kendpoints MAC
to find out if any legal modifications were made (if
the application cares).

• When a writer receives a record, it checks the
Kwriters MAC to verify that no illegal modifica-
tions have been made.

• When a reader receives a record, it uses the
Kreaders MAC to check if any third party modi-
fications have been made.

Note that with the endpoint-writer-reader MAC
scheme, readers cannot detect illegal changes made by
other readers. The problem is that a shared key cannot
be used by an entity to police other entities at the same
privilege level. Because all readers share Kreaders (so
that they can detect third party modifications), all read-
ers are also capable of generating valid Kreaders MACs.
This is only an issue when there are two or more read-
ers for a context and, in general, readers not detecting
reader modifications should not be a problem (reader
modifications are still detectable at the next writer
or endpoint). However, if needed, there are two op-
tions for fixing this: (a) readers and writers/endpoints
share pairwise symmetric keys; writers/endpoints com-
pute and append a MAC for each reader, or (b) end-
points and writers append digital signatures rather than
MACs; unlike Kwriters MACs, readers can verify these
signatures. The benefits seem insufficient to justify the
additional overhead of (a) or (b), but they could be
implemented as optional modes negotiated during the
handshake.

3.5 The mcTLS Handshake Protocol
The mcTLS handshake is very similar to the TLS

handshake. We make two simplifications here for ease of
exposition: first, although the principles of the mcTLS
handshake apply to many of the cipher suites available
in TLS, we describe the handshake using ephemeral
Diffie-Hellman with RSA signing keys because it is
straightforward to illustrate and common in practice.
Second, we describe the handshake with a single mid-
dlebox, but extending it to multiple middleboxes is
straightforward. Table 2 defines the notation we use
in this paper.

The purpose of the handshake is to:

• Allow the endpoints to agree on a cipher suite, a
set of encryption contexts, a list of middleboxes,
and permissions for those middleboxes.

• Allow the endpoints to authenticate each other
and all of the middleboxes (if they choose to).

• Establish a shared symmetric key Kendpoints be-
tween the endpoints.



Notation Meaning

DH+
E , DH−

E Entity E’s ephemeral Diffie-Hellman
public/private key pair

DHCombine(·, ·) Combine Diffie-Hellman public and pri-
vate keys to produce a shared secret

PK+
E , PK−

E Entity E’s long-term signing pub-
lic/private key pair (e.g., RSA)

Sign
PK−

E
(·) Signature using E’s private key

SE Secret known only to entity E
PSE1-E2 Pre-secret shared by entities E1 & E2

SE1-E2 Secret shared between entities E1 & E2

PRFS(·) Pseudorandom function keyed with se-
cret S as defined in the TLS RFC [11]

KE1-E2 Symmetric key shared by E1 and E2

KE Key material generated by entity E
EncK(·) Symmetric encryption using key K
MACK(·) Message authentication code with key K
AuthEncK(·) Authenticated encryption with key K

H(·) Cryptographic hash
|| Concatenation

Table 2: Notation used in this paper.

• Establish a shared symmetric key Kwriters for each
context among all writers and a shared symmetric
key Kreaders

1 for each context among all readers.

Handshake Below we explain the steps of a mcTLS
handshake (shown in Figure 1), highlighting the dif-
ferences from TLS. Note that it has the same 2-RTT
“shape” as TLS.

1 Setup: Each party generates a (public) random
value and an ephemeral Diffie-Hellman key pair
(the middlebox generates two key pairs, one for
the client and one for the server). The endpoints
also each generate a secret value.

2 Client Hello: Like TLS, an mcTLS session be-
gins with a ClientHello message containing a
random value. In mcTLS, the ClientHello carries
a MiddleboxListExtension, which contains (1) a
list of the middleboxes to include in the session—
we discuss building this list in the first place in
§6.1—and (2) a list of encryption contexts, their
purposes (strings meaningful to the application),
and middlebox access permissions for every con-
text. The client opens a TCP connection with the
middlebox and sends the ClientHello; the mid-
dlebox opens a TCP connection with the server
and forwards the ClientHello.

3 Certificate & Public Key Exchange: As in
TLS, the server responds with a series of messages

1Though we describe each as one key for simplicity,
Kreaders and Kendpoints are really four keys each (just
like the “session key” in TLS): an encryption key for
data in each direction and a MAC key for data in each
direction. Likewise, Kwriters is really one MAC key for
each direction.

TCP Handshake

Client Middlebox Server

ClientHello
randC

TCP Handshake

read and forward forward

ChangeCipherSpec
Finished

ServerHello
Certi�cate

randS

PK+
S

ServerKeyExchange
Sign      (DH+

S)PK –S

MiddleboxKeyMaterial (M)
AuthEnc     ({KC

readers}, {KC
writers})KC-M

Kreaders ! PRF                                 (”reader keys” || randC || randS)
Kwriters ! PRF                                (”writer keys” || randC || randS)

context key computation (all parties)

KC
readers || KS

readers

KC
writers || KS

writers

ClientKeyExchange
DH+

C

randC , SC , DH+
C , DH–

C

generate
randM , DH+

M1 , DH–
M1, DH+

M2, DH–
M2

generate
randS , SS , DH+

S , DH–
S

generate

ServerKeyExchange

ServerHelloDone

|Sign       (DH+
M1)PK –

M

ServerHello
Certi�cate

randM

PK+
M

Sign       (DH+
M2)}PK –

M

client key computation

PSC-S ! DHCombine(DH+
S , DH–

C )

Kendpoints ! PRF    (”k” || randC || randS )SC-S

{KC
readers, KC

writers} ! PRF    (”ck” || randC )SC

SC-S ! PRF          (”ms” ||  randC || randS)PSC-S

PSC-M ! DHCombine(DH+
M1 , DH–

C )

KC-M ! PRF     (”k” || randC || randM )SC-M

SC-M ! PRF          (”ms” ||  randC || randM)PSC-M

server key computation

mirrors client

MiddleboxKeyMaterial (S)
AuthEnc         ({KC

readers}, {KC
writers})Kendpoints

ChangeCipherSpec
Finished

MiddleboxKeyMaterial (M)
AuthEnc     ({KS

readers}, {KS
writers})KS-M

ServerHelloDone

middlebox key computation

PSC-M ! DHCombine(DH+
C , DH–

M1 )

KC-M ! PRF     (”k” || randC || randM )SC-M

SC-M ! PRF          (”ms” ||  randC || randM)PSC-M

PSS-M ! DHCombine(DH+
S , DH–

M2 )

KS-M ! PRF    (”k” || randS || randM )SS-M

SS-M ! PRF          (”ms” ||  randS || randM)PSS-M

MiddleboxKeyMaterial (S)
AuthEnc         ({KS

readers}, {KS
writers})Kendpoints

4

1

2

3

5

7

6

Figure 1: The mcTLS handshake.

containing a random value, its certificate, and an
ephemeral public key signed by the key in the cer-
tificate. The middlebox does the same: it sends
its random value, certificate, and ephemeral pub-
lic key to both the client and the server. The client
sends an ephemeral public key, which the middle-
box saves and forwards to the server. The middle-
box piggy-backs its messages on the ServerKeyEx-
change and ClientKeyExchange messages (indi-
cated by dashed arrows). The ephemeral keys pro-
vide forward secrecy; the middlebox uses different
key pairs for the client and the server to prevent
small subgroup attacks [22].



mcTLS mcTLS (Client Key Dist.) Split TLS
Client Middlebox Server Client Middlebox Server Client Middlebox Server

Hash 12 + 6N 0 12 + 6N 10 + 5N 0 10 + 5N 10 20 10
Secret Comp. N + 1 2 N + 1 N + 1 1 1 1 2 1

Key Gen. 4K + N + 1 (k ≤ 2K) + 2 4K + N + 1 2K + N + 1 1 1 1 2 1
Asym Verify N + 1 n ≤ 1 n ≤ N N + 1 n ≤ 1 0 1 1 0
Sym Encrypt N + 2 0 N + 2 N + 2 0 1 1 2 1
Sym Decrypt 2 2 2 1 1 2 1 2 1

(N = number of middleboxes; K = number of contexts)

Table 3: Cryptographic operations performed by the client, middlebox, and server during the handshake. Assumes
no TLS extensions, a DHE-RSA cipher suite, and the client is not authenticated with a certificate.

4 Shared Key Computation: The client com-
putes two secrets (SC-M and SC-S) using the con-
tributions from the server and middlebox, which
it uses to generate a symmetric key shared with
the middlebox (KC-M ) and the server (Kendpoints).
The client also generates “partial keys,” KC

writers

and KC
readers, for each context, using a secret

known only to itself.
The server follows the same procedure as the
client, resulting in Kendpoints, KS-M , KS

writers, and
KS

readers. The server may choose to avoid this
overhead by asking the client to generate and dis-
tribute complete context keys (§3.6).
When the middlebox receives the ClientKeyEx-
change, it computes KC-M and KS-M using the
client’s and server’s ephemeral public keys, respec-
tively; it will use these keys later to decrypt con-
text key material from the client and server.

5 Context Key Exchange: Next, for each con-
text, the endpoints send the partial context keys
to the middlebox (KC

readers and KS
readers if it has

read access and KC
writers and KS

writers if it has
write access). These messages are sent encrypted
and authenticated under KC-M and KS-M , ensur-
ing the secrecy and integrity of the partial context
keys. The middlebox forwards each message on to
the opposite endpoint so it can be included in the
hash of the handshake messages that is verified at
the end of the handshake. The endpoints also send
all of the partial context keys to the opposite end-
point encrypted under Kendpoints. The middlebox
forwards this message (but cannot read it).

6 Context Key Computation: The client indi-
cates that the cipher negotiated in the handshake
should be used by sending a ChangeCipherSpec
message. Receipt of the ChangeCipherSpec mes-
sage prompts all parties to generate context keys
using PRF(·) keyed with the concatenation of the
partial context keys. This “partial key” approach
serves two purposes: (1) it provides contributory
key agreement (both endpoints contribute ran-
domness) and (2) it ensures that a middlebox only
gains access to a context if the client and server
both agree.

7 Finished: The mcTLS handshake concludes
with the exchange of Finished messages. As
in TLS, the Finished message contains a hash
of the concatenation of all handshake messages
(including those directed to the middlebox):
PRFSC-S

(finished label,H(messages)). Verify-
ing this message ensures that both endpoints ob-
serve the same sequence of identical handshake
messages, i.e., no messages were modified in flight.

Details There are a few subtle differences between the
mcTLS and TLS handshakes. We briefly highlight the
changes here and argue why they are safe; for a more
detailed security analysis, see [1].

• For simplicity, the middlebox cannot negotiate ses-
sion parameters (e.g., cipher suite or number of
contexts). A more complex negotiation protocol
could be considered in future work if needed.
• The server’s context key material is not included

in the client’s Finished message, since this would
require an extra RTT. However, this key material
is sent encrypted and MAC-protected, so an ad-
versary cannot learn or modify it.
• The client cannot decrypt the context key mate-

rial the server sends the middlebox and vice versa.
This would require establishing a three-way sym-
metric key between both endpoints and each mid-
dlebox. Because the middlebox needs key material
from both endpoints, one rogue endpoint cannot
unilaterally increase a middlebox’s permissions.
• The middlebox cannot verify the handshake hash

in the Finished message because it does not know
Kendpoints. We do not include per-middlebox Fin-
ished messages to avoid overhead. This means it
is possible for the middlebox to observe an incor-
rect sequence of handshake messages. However,
this is at most a denial of service attack. For in-
stance, even though the middlebox cannot detect
a cipher suite downgrade attack, the endpoints
would detect it and terminate the session. Further-
more, context key material is sent encrypted and
MAC-protected under keys each endpoint shares
with the middlebox, so as long as at least one end-
point verifies the middlebox’s certificate, an adver-
sary cannot learn or modify the context keys.



3.6 Reducing Server Overhead
One concern (albeit a diminishing one [17, 4]) about

deploying TLS is that the handshake is computationally
demanding, limiting the number of new connections per
second servers can process. We do not want to make this
problem worse in mcTLS, and one way we avoid this
is by making certain features optional. For example,
similar to TLS, authentication of the entities in the ses-
sion is optional—in some cases, the server may not care
who the middleboxes are. Another burden for servers
in mcTLS is generating and encrypting the partial con-
text keys for distribution to middleboxes. Rather than
splitting this work between the client and server, it can
optionally be moved to the client: context keys are gen-
erated from the master secret shared by the endpoints
and the client encrypts and distributes them to middle-
boxes (“client key distribution mode”). This reduces the
server load, but it has the disadvantage that agreement
about middlebox permissions is not enforced. (Note
that this does not sacrifice contributory key agreement
in the sense that both endpoints contribute randomness.
The client generates the context keys from the secret
it shares with the server; if client/server key exchange
was contributory, the context keys inherit this benefit.)
Choosing a handshake mode is left to content providers,
who can individually decide how to make this control-
performance tradeoff; servers indicate their choice to
clients in the ServerHello.

Table 3 compares the number of cryptographic opera-
tions performed by mcTLS and the split TLS approach
described in Section 2.2. We show numbers for mcTLS
both without and with client context key distribution.
If we consider a simple example with a single middle-
box (N = 1), the additional server load using client
key distribution mode is limited to a small number of
lightweight operations (Hash and Sym Decrypt).

4. USING mcTLS

4.1 Using Contexts
Just as the architects of HTTP had to define how it

would operate over TLS [30], protocol designers need
to standardize how their applications will use mcTLS.
From an application developer’s perspective, the biggest
change mcTLS brings is contexts: the application needs
to decide how many contexts to use and for what. First
we give the topic a general treatment and then follow
up with some concrete use cases below.

There are two ways to think about contexts: as sec-
tions of the data stream or as configurations of middle-
box permissions. For example, suppose an application
wants to transfer a document consisting of three pieces,
A, B, and C, via two middleboxes, M1 and M2. M1

should have read access to the entire document and M2

should read A, write B, and have no access to C. The
application could allocate one context for each piece and
assign the appropriate permissions (Figure 2 left), or it

CONTEXT RR CONTEXT RW CONTEXT R–

A B C
CONTEXT WR CONTEXT WW CONTEXT W–

CONTEXT –R CONTEXT –W CONTEXT ––

R

W

–

M1

R W –
M2

CONTEXT A CONTEXT B CONTEXT C

A B C

M1: R
M2: R

M1: R
M2: W

M1: R
M2: –

Figure 2: Strategies for using encryption contexts: context-
per-section (left) and context-as-permissions (right).

could create one context for each combination of per-
missions and use the appropriate context when sending
each piece of the document (Figure 2 right).

Which model is appropriate depends on the use case:
in the context-per-section model, n sections means n
contexts. In the contexts-as-permissions model, m mid-
dleboxes means 3m contexts. In practice, we expect at
least one of these numbers to be small, since data in
a session often is not of wildly varying levels of sensi-
tivity and since most middleboxes need similar permis-
sions (Table 1). For instance, in the case of HTTP, we
imagine four contexts will be sufficient: request head-
ers, request body, response headers, and response body.
(Though you could imagine extreme cases in which each
HTTP header has its own access control settings.)

Finally, the example above uses a static context as-
signment, but contexts can also be selected dynamically.
An application could make two contexts, one which a
middlebox can read and one it cannot, and switch be-
tween them to enable or disable middlebox access on-
the-fly (for instance, to enable compression in response
to particular user-agents).

4.2 Use Cases

Data Compression Proxy Many users—particularly
on mobile devices—use proxies like Chrome’s Data
Compression Proxy [3], which re-scale/re-encode im-
ages, to reduce their data usage. However, Google’s
proxy currently ignores HTTPS flows. With mcTLS,
users can instruct their browsers to give the compres-
sion proxy write access to HTTP responses. One step
further, the browser and web server could coordinate to
use two contexts for responses: one for images, which
the proxy can access, and the other for HTML, CSS, and
scripts, which the proxy cannot access. Context assign-
ments can even change dynamically: if a mobile user
connects to Wi-Fi mid-page-load, images might also be
transferred over the no-access context since compression
is no longer required.

Parental Filtering Libraries and schools—and some-
times even entire countries [8]—often employ filters to
block age-inappropriate content. Such filters often de-
pend on seeing the full URL being accessed (only 5% of
the entries on the Internet Watch Foundation’s blacklist



are entire (sub-)domains [26]). With mcTLS, IT staff
could configure their machines to allow their filter read-
only access to HTTP request headers, and user-owned
devices connecting to the network could be configured
to do the same dynamically via DHCP. The filter drops
non-compliant connections.

Corporate Firewall Most companies funnel all net-
work traffic through intrusion detection systems (IDS)/
firewalls/virus scanners. Currently, these devices either
ignore encrypted traffic or install root certificates on
employees’ devices, transparently giving themselves ac-
cess to all “secure” sessions. With mcTLS, administra-
tors can configure devices to give the IDS—which users
can now see—read-only access. Security appliances no
longer need to impersonate end servers and users no
longer grow accustomed to installing root certificates.

Online Banking Though we designed mcTLS to give
users control over their sessions, there are cases in which
the content provider really does know better than the
user and should be able to say “no” to middleboxes. A
prime example is online banking: banks have a respon-
sibility to protect careless or nontechnical users from
sharing their financial information with third parties.
The server can easily prevent this by simply not giving
middleboxes its half of the context keys, regardless of
what level of access the client assigns.

HTTP/2 Streams One of the features of HTTP/2
is multiplexing multiple streams over a single transport
connection. mcTLS allows browsers to easily set differ-
ent access controls for each stream.

5. EVALUATION
mcTLS’ fine-grained access control requires gener-

ating and distributing extra keys, computing extra
MACs, and, possibly, sending a larger number of smaller
records than TLS. In this section we evaluate this over-
head.

Experimental Setup We built a prototype of
mcTLS by modifying the OpenSSL2 implementation
of TLSv1.2. The prototype supports all the features
of mcTLS’s default mode, described in §3.4 and §3.5.
We use the DHE-RSA-AES128-SHA256 cipher suite,
though nothing prevents mcTLS from working with any
standard key exchange, encryption, or MAC algorithm.
In addition, though the MiddleboxKeyMaterial mes-
sage should be encrypted using a key generated from
the DHE key exchange between the endpoints and the
middlebox, we use RSA public key cryptography for
simplicity in our implementation. As a result, forward
secrecy is not currently supported by our implementa-
tion. mcTLS requires some additions to the API, e.g.,
defining contexts and their read/write permissions, but
these are similar to the current OpenSSL API.

2OpenSSL v1.0.1j from October 2014

Next we wrote a simple HTTP client, server, and
proxy and support four modes of operation:

(1) mcTLS: Data transferred using mcTLS.
(2) SplitTLS: Split TLS connections between hops;

middleboxes decrypt and re-encrypt data.
(3) E2E-TLS: A single end-to-end TLS connection;

middleboxes blindly forward encrypted data.
(4) NoEncrypt: No encryption; data transferred and

forwarded in the clear over TCP.

We instrumented the mcTLS library and our applica-
tions to measure handshake duration, file transfer time,
data volume overhead, and connections per second.

We test in two environments. (1) Controlled : Client,
middleboxes, and server all run on a single machine.
We control bandwidth (10 Mbps unless otherwise noted,
chosen from the median of SpeedTest.net samples) and
latency with tc. (2) Wide Area: We run the client,
middlebox, and server on EC2 instances in Spain, Ire-
land, and California, respectively. The client connects
either over fiber or 3G. Unless otherwise specified, ex-
periments in either environment consist of 50 runs for
which we report the mean; error bars indicate one stan-
dard deviation. Middleboxes are given full read/write
access to each context since this is the worst case for
mcTLS performance.

5.1 Time Overhead

Handshake Time Figure 3 (left) shows the time to
first byte as the number of contexts increases. There is
one middlebox and each link has a 20 ms delay (80 ms
total RTT). NoEncrypt serves as a baseline, with a time
to first byte of 160 ms, or 2 RTT. Up to 9 contexts,
mcTLS, E2E-TLS, and SplitTLS each take 4 RTTs. At
10 contexts, mcTLS jumps to 5 RTT and at 14 to 7.

The culprit was TCP’s Nagle algorithm, which de-
lays the transmission of data until a full MSS is ready
to be sent. At 10 contexts, the handshake messages
from the proxy to the server exceed 1 MSS and Nagle
holds the extra bytes until the first MSS is ACKed. At
14 contexts the same thing happens to the middlebox
key material from the client (+1 RTT) and the server
(+1 RTT). Disabling the Nagle algorithm (not uncom-
mon in practice [23]) solved the problem. We tried E2E-
TLS, SplitTLS, and NoEncrypt without Nagle as well,
but their performance did not improve since their mes-
sages never exceed 1 MSS.

Time to first byte scales linearly with the number of
middleboxes, since in our experiments adding a middle-
box also adds a 20 ms link (Figure 3 right). The latency
increase and the extra key material to distribute exac-
erbate the problems caused by Nagle; disabling it once
again brings mcTLS performance in line with E2E-TLS
and SplitTLS. Finally, if middleboxes lie directly on
the data path (which often happens), then the only ad-
ditional overhead is processing time, which is minimal.

Takeaway: mcTLS’s handshake is not discernibly
longer than SplitTLS’s or E2E-TLS’s.
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Figure 3: Time to first byte vs. # contexts (left) and # middleboxes (right).
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Figure 4: Page load time for differ-
ent numbers of mcTLS contexts.
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Figure 5: Load sustainable at the server (left) and middlebox (right).

0 5 10 15 20 25
Load Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

mcTLS (4 Ctx)
SplitTLS (Nagle off)
E2E-TLS (Nagle off)
NoEncrypt (Nagle off)
mcTLS (4 Ctx, Nagle Off)

Figure 6: Page load time.

File Transfer Time Next we explore the tim-
ing behavior of each full protocol by transferring files
through a single middlebox. To choose realistic file
sizes, we loaded the top 500 Alexa pages and picked
the 10th, 50th, and 99th percentile object sizes (0.5 kB,
4.9 kB, and 185 kB, respectively). We also consider
large (10MB) downloads (e.g., larger zip files or video
chunks).

The first four bar groups in Figure 7 show the down-
load time for increasing file sizes at 1 Mbps; each bar
represents 10 repetitions. As expected, the handshake
overhead dominates for smaller files (<5 kB); all proto-
cols that use encryption require an additional ∼17 ms
compared to NoEncrypt. mcTLS is comparable to E2E-
TLS and SplitTLS. We see the same behavior when
downloading files at different link rates or in the wide
area (last four bar groups). Handshake and data trans-
fer dominate download time; protocol-specific process-
ing makes little difference.

Takeaway: mcTLS transfer times are not substantially
higher than SplitTLS or E2E-TLS irrespective of link
type, bandwidth, or file size.

Page Load Time To understand how the micro-
benchmarks above translate to real-world performance,
we examine web page load time. Though we have not
yet ported a full-blown web browser to mcTLS, we ap-
proximate a full page load in our simple client as follows.
First, we load all of the Alexa top 500 pages that sup-
port HTTPS in Chrome. For each page, we extract a
list of the objects loaded, their sizes, and whether or not

an existing connection was re-used to fetch each one (we
cannot tell which connection was used, so we assign the
object to an existing one chosen at random). Next, our
client “plays back” the page load by requesting dummy
objects of the appropriate sizes from the server. We
make the simplifying assumption that each object de-
pends only on the previous object loaded in the same
connection (this might introduce false dependencies and
ignore true ones).

First, we compare three mcTLS strategies: 1-Context
(all data in one context), 4-Context (request headers, re-
quest body, response headers, response body), and Con-
textPerHeader (one context for each HTTP header, one
for request body, and one for response body). Figure 4
shows the CDF of page load times for each strategy.
The plot shows similar performance for each strategy,
indicating that mcTLS is not overly sensitive to the way
data is placed into contexts.

Next we compare mcTLS to SplitTLS, E2E-TLS, and
NoEncrypt (Figure 6). We use the 4-Context strategy
for mcTLS, since we imagine it will be the most com-
mon. SplitTLS, E2E-TLS, and NoEncrypt perform the
same, while mcTLS adds a half second or more. Once
again, Nagle is to blame: sending data in multiple con-
texts causes back-to-back send() calls to TCP. The first
record is sent immediately, but the subsequent records
are held because they are smaller than an MSS and
there is unacknowledged data in flight. Repeating the
experiment with Nagle turned off closed the gap.

Takeaway: mcTLS has no impact on real world Web
page load times.
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5.2 Data Volume Overhead
Most of mcTLS’ data overhead comes from the hand-

shake, and it increases with the number of middleboxes
and contexts (due to certificates and context key distri-
bution). Figure 8 shows the total size of the handshake
for different numbers of contexts and middleboxes. For
a base configuration with one context and no middle-
boxes, the mcTLS handshake is 2.1 kB compared to
1.6 kB for SplitTLS and E2E-TLS. Note that the hand-
shake size is independent of the file size.

Next, each record carries MACs (three in mcTLS,
one in TLS). Their impact depends on the application’s
sending pattern—smaller records mean larger overhead.
For the web browsing experiments in §5.1, the median
MAC overhead for SplitTLS compared to NoEncrypt
was 0.6%; as expected, mcTLS triples that to 2.4%.

Finally, padding and header overhead are negligible.

Takeaway: Apart from the initial handshake overhead,
which is negligible for all but short connections, mcTLS
introduces less than 2% additional overhead for web
browsing compared to SplitTLS or E2E-TLS.

5.3 CPU Overhead
Figure 5 (left) shows the number of connections (only

handshakes) per second the server can sustain. We see
that the extra asymmetric encryption for distributing
middlebox key material takes a toll. The mcTLS server
handles 23% fewer connections than SplitTLS or E2E-

TLS; that number drops to 35% fewer as the number of
contexts, and therefore the number of partial context
keys the server must encrypt, increases. We note two
things: (1) key distribution optimizations, which we in-
tend to pursue in future work, can shrink this gap, and
(2) the server can reclaim this lost performance if the
client handles key generation/distribution (§3.6).

The results for the middlebox are more interesting
(Figure 5 right). First, E2E-TLS significantly outper-
forms mcTLS and SplitTLS (note the change in Y scale)
because it does not participate in a TLS handshake.
Second, mcTLS performs better than SplitTLS because
in SplitTLS the proxy has to participate in two TLS
handshakes. These results show it is not only feasible,
but practical to use middleboxes in the core network.

Takeaway: mcTLS servers can serve 23%–35% fewer
connections per second than SplitTLS, but mcTLS mid-
dleboxes can serve 45%–75% more.

5.4 Deployment
To begin understanding deployability, we built an

extension to the Ruby SSL library that adds support
for mcTLS with less than 250 lines of C code. Using
the extension, we then built a 17 line Ruby web client
with the same functionality as our C/OpenSSL-based
evaluation client. While a bit more work is needed to
make the extension more Ruby-like, the potential to eas-
ily write mcTLS-enabled mobile apps with developer-
friendly tools like RubyMotion3 is promising.

We also modified the OpenSSL s_time benchmarking
tool to support mcTLS. Again, minimal changes were
required: less than 30 new lines of C code were added,
and about 10 lines were slightly changed. This means
that relatively minor developer effort is required to gain
the full benefits of mcTLS.

While supporting fine-grained access control requires
the minimal effort of assigning data to a context and
setting middlebox permissions for those contexts, many
of the benefits of mcTLS are immediately available with
just support from the HTTP client library and server.
For example, HTTP libraries could use the 4-Context
strategy by default, requiring no additional program-
3http://www.rubymotion.com/



ming or effort from application developers. Finally, we
note that clients and servers can easily fall back to reg-
ular TLS if an mcTLS connection cannot be negotiated.

Takeaway: Upgrading an application or library to
mcTLS appears to be straightforward and easy.

6. DISCUSSION

6.1 Middlebox Discovery
mcTLS assumes that the client has a list of middle-

boxes prior to initiating a handshake, which it includes
in the ClientHello. Building this list is largely orthog-
onal to mcTLS itself; many existing mechanisms could
be used, depending on who is trying to add a middlebox
to the session. For example:

• Users or system administrators might config-
ure the client (application or OS) directly (e.g.,
the user might point his browser toward Google’s
SPDY proxy). If users express interest in, e.g.,
a “nearby” data compression proxy, rather than
a particular one, clients could discover available
proxies using mDNS [10] or DNS-SD [9].
• Content providers could specify middleboxes to

be used in any connection to its servers using DNS.
• Network operators can use DHCP or

PDP/PDN to inform clients of any required
middleboxes (e.g., virus scanners).

If a priori mechanisms like these are not flexible
enough, the handshake could be extended to allow, e.g.,
on-path middleboxes to insert themselves (subject to
subsequent approval by the endpoints, of course) dur-
ing session setup. The costs and benefits of this are not
immediately clear; we leave working out the details of
more complex session negotiation for future work.

6.2 User Interface
The technical solution for adding middleboxes to se-

cure communication sessions means little without suit-
able interfaces through which users can control it. The
primary challenges for such an interface are:

• Indicating to the user that the session is “secure.”
Re-using the well-known lock icon is misleading,
since the semantics of TLS and mcTLS differ.
• Communicating to the user who can do what.

Which middleboxes can read the user’s data?
Which can modify it? What modifications do they
make? Who owns the middleboxes? Who added
them to the session and why?
• Allowing users to set access controls. Which ses-

sions can a middlebox see? Within those sessions,
which fields can it read or write? The difficulty is
making such controls simple and scalable. For in-
stance, asking users to set middlebox permissions
for each domain they visit is not practical.

Designing a satisfactory interface atop mcTLS is a
project in and of itself, one we cannot begin to do justice
here.

R1 R2 R3 R4 R5

mcTLS • • • • •
(1) Custom Certificate

(2) Proxy Certificate Flag ◦ ◦
(3) Session Key Out-of-Band • • ◦

(4) Custom Browser
(5) Proxy Server Extension ◦ ◦ ◦ ◦

(• = full compliance; ◦ = partial compliance)

Table 4: Design principle compliance for mcTLS and
competing proposals.

7. RELATED WORK
There has been a lot of recent interest, particularly

in industry, for including intermediaries in encrypted
sessions. First we describe five previous proposals for
doing so in the context of TLS; as shown in Table 4,
none of them meets all five of our requirements. Then
we discuss alternatives that replace TLS altogether.

(1) Custom Root Certificate Section 2.2 describes
a common technique in which network administrators
install a custom root certificate on the client.

Discussion: This technique does not meet any of our
requirements. First, the server, and in many cases the
client, is not aware of the existence of the middlebox
(R4) so it clearly cannot authenticate it (R1). Second,
the middlebox has full read and write access to all data
in the session (R5). Finally, since the client has no
control after the first hop, there is no guarantee about
the secrecy, integrity, or authenticity of the data (R2,
R3) or the identity of the server (R1).

(2) “I’m a proxy” Certificate Flag A 2014 IETF
draft from Ericsson and AT&T proposes using the
X.509 Extended Key Usage extension to indicate that a
certificate belongs to a proxy [20]. Upon receiving such
a certificate during a TLS handshake, the user agent
would omit the domain name check (presumably with
user permission) and establish a TLS session with the
proxy, which would in turn open a connection with the
server. Based on user preferences, the user agent might
only accept proxy certificates for certain sessions.

Discussion: In this case, the client is made explicitly
aware of the presence of the middlebox, so it can au-
thenticate it (R1) and can control its use on a per con-
nection basis (R4). The client still cannot authenticate
the server and the server is unaware of the middlebox.
R2, R3, and R5 remain unaddressed.

(3) Pass Session Key Out-of-Band Another IETF
draft, this one from Google, assumes that the client
maintains a persistent TLS connection with the proxy
and multiplexes multiple sessions over that connection
(much how Google’s data compression proxy operates).
After establishing an end-to-end TLS connection with
the server (which the proxy blindly forwards), the client
passes the session key to the proxy before transmit-



ting data on the new connection [28]. Again, the user
agent can selectively grant the proxy access on a per-
connection basis based on user preference.

Discussion: Compared with (1), this solution has the
additional benefit that the client authenticates both the
middlebox and the server (R1) and knows that the ses-
sion is encrypted end-to-end (R2). R3, R4, and R5 are
still partially or completely unaddressed.

(4) Ship a Custom Browser A fourth option is to
modify the browser itself to accept certificates from cer-
tain trusted proxies. This is the approach Viasat is tak-
ing for its Exede satellite Internet customers [18], argu-
ing that caching and prefetching are critical on high-
latency links.

Discussion: This solution is essentially the same as (1),
so it also fails all requirements. In addition, it has the
drawback that a custom browser may not be updated
quickly, is expensive to develop and maintain, and may
be inconvenient to users.

(5) Proxy Server Extension The most promising
approach so far is Cisco’s TLS Proxy Server Exten-
sion [21]. The proxy receives a ClientHello from the
client, establishes a TLS connection with the server, and
includes the server’s certificate and information about
the ciphersuite negotiated for the proxy-server connec-
tion in a ProxyInfoExtension appended to the Server-
Hello it returns to the client. The client can then check
both the proxy’s and the server’s certificate.

Discussion: The client must completely trust the mid-
dlebox to provide honest information about the server
certificate and ciphersuite, so this solution only partially
fulfills R1, R2, and R3. The proxy is not necessarily vis-
ible to the server, so only partial R4. Finally, the proxy
has read/write access to all data (R5).

Other Approaches An alternative to TLS-based
techniques is an extension to IPsec that allows portions
of the payload to be encrypted/authenticated between
the two end-points of a security association and leaves
the remainder in the clear [16]. The authors target this
architecture for securely enabling intermediary-based
services for wireless mobile users. This solution leaves
data for middleboxes completely unencrypted (R2); R1
and R3 are also violated. Furthermore, this approach
does not allow explicit control of the data flow to dif-
ferent entities (R4).

Tcpcrypt [6, 5] is an alternative proposal for estab-
lishing end-to-end encrypted sessions. Compared with
TLS, it reduces the overhead on the server, leaves au-
thentication to the application, can be embedded in
the TCP handshake, and uses a session ID to unam-
biguously identify the endpoints of a session. Similar
to TLS, tcpcrypt supports communication between two
endpoints only, but we believe that the concepts of en-
cryption contexts and contributory context keys could
be applied to it as well. However, because of mcTLS’s

increased handshake size, it may no longer be possible
to embed the entire handshake in the TCP handshake.

An alternative to a transport-layer protocol, like TLS
or mcTLS, is supporting trusted intermediaries at the
network layer. The Delegation-Oriented Architecture
(DOA) [34] and Named Data Networking (NDN) [15]
do this with their own security mechanisms and prop-
erties. We chose to modify TLS due to its widespread
use, making it the perfect vehicle for immediate exper-
imentation and incremental deployment.

8. CONCLUSION
The increasing use of TLS by Internet services pro-

vides privacy and security, but also leads to the loss
of capabilities that are typically provided by an invis-
ible army of middleboxes offering security, compres-
sion, caching, or content/network resource optimiza-
tion. Finding an incrementally deployable solution that
can bring back these benefits while maintaining the se-
curity expectations of clients, content providers, and
network operators is not easy. mcTLS does this by ex-
tending TLS, which already carries a significant portion
of HTTP traffic. mcTLS focuses on transparency and
control: (1) trusted middleboxes are introduced at the
consent of both client and server, (2) on a per session ba-
sis, (3) with clear access rights (read/write), and (4) to
specific parts of the data stream.

We show that building such a protocol is not only
feasible but also introduces limited overhead in terms
of latency, load time, and data overhead. More im-
portantly, mcTLS can be incrementally deployed and
requires only minor modifications to client and server
software to support the majority of expected use cases.
By using mcTLS, secure communication sessions can
regain lost efficiencies with explicit consent from users
and content providers.
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