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ABSTRACT
Content delivery networks (CDNs) commonly use DNS to map
end-users to the best edge servers. A recently proposed EDNS0-
Client-Subnet (ECS) extension allows recursive resolvers to include
end-user subnet information in DNS queries, so that authoritative
DNS servers, especially those belonging to CDNs, could use this
information to improve user mapping. In this paper, we study the
ECS behavior of ECS-enabled recursive resolvers from the perspec-
tives of the opposite sides of a DNS interaction, the authoritative
DNS servers of a major CDN and a busy DNS resolution service.
We find a range of erroneous (i.e., deviating from the protocol spec-
ification) and detrimental (even if compliant) behaviors that may
unnecessarily erode client privacy, reduce the effectiveness of DNS
caching, diminish ECS benefits, and in some cases turn ECS from
facilitator into an obstacle to authoritative DNS servers’ ability to
optimize user-to-edge-server mappings.

CCS CONCEPTS
• Networks → Application layer protocols; Network mea-
surement; Naming and addressing.
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1 INTRODUCTION
Aside from resolving hostnames to IP addresses, the domain name
system (DNS) has been widely used by major content delivery
networks (CDNs) [2, 7, 17] for assigning end-users to the nearest
edge servers. Since the only topological information available to
authoritative nameservers in a basic DNS query is the source IP
address (which belongs to the recursive DNS resolver rather than
the end-user), many CDNs utilize the resolver IP address to select
an edge server for a given query, using the resolver as a proxy for
the end-user location. However, the increasing number of public
DNS services in the last few years that are less likely to be a good
approximation for end-user location compared to ISP-provided
resolvers results in an increase in suboptimal user-to-edge server
mapping [1, 6, 19].
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To combat this issue, an extension to the DNS has been pro-
posed called EDNS-Client-Subnet (ECS) [9] which allows recursive
resolvers to convey to authoritative nameservers a prefix of the
IP address of the client (loosely referred to as the client’s subnet)
requesting resolution service from the recursive resolver. Thus,
instead of using the recursive resolver’s IP address, the authorita-
tive DNS server can use the client subnet information to provide
edge server selection tailored to the ultimate client rather than the
recursive resolver.

Recursive resolvers add the ECS option to DNS queries filling
in a prefix of the client’s address (the RFC recommends 24-bits
for IPv4) and setting the source prefix length field to the number
of bits added. When the authoritative nameserver that supports
ECS receives a query with an ECS option, it can optionally use
the client subnet information to tailor a response. Since the source
prefix length may not be at the appropriate granularity level, the
authoritative nameserver returns the scope prefix length in an ECS
option included in the DNS response, indicating the range of client
IP addresses for which this answer is appropriate. For example, if a
recursive resolver sends queries with source prefix length 24 but
the authoritative answer is appropriate for all clients within the
encompassing /16 prefix, the authoritative nameserver will set the
scope prefix length to 16. The recursive resolver upon receiving a
response with the ECS option, caches the records and should return
them for the duration of the TTL to any clients covered by the
prefix at the scope prefix length number of bits.

ECS was proposed in 2012 and standardized in 2016 [9], yet little
is known about its adoption by recursive resolvers. At the same
time, while ECS adoption may appear low in absolute numbers (as
projected in the RFC and seen from the numbers in this paper), this
is an important technology enabling third-party DNS resolution
services to interact efficiently with CDNs and other distributed
content delivery platforms, already in use by many prominent
DNS and CDN providers. In this work, we investigate the ECS-
related behavior of recursive resolvers and make the following
contributions:
• We analyze ECS deployment by recursive resolvers via passive
observations from a large CDN perspective and “in the wild”,
i.e., among resolvers found through active scans. Passive ob-
servation discovers many more ECS resolvers while actively
discovered resolvers allow a closer study of their behavior.

• We study probing strategies used by recursive resolvers to de-
cide whether to include the ECS option in their queries. We
observe some probing behaviors that lead to unnecessary pri-
vacy leakage and some causing suboptimal CDN edge server
selections. We offer a recommendation that would fulfill the
probing purpose without these drawbacks.

• We consider the caching behavior of recursive resolvers that
support ECS. We find various deviations from the expected
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caching behavior, ranging from not following the RFC recom-
mendation on exposing no more that 24 bits of the client subnet
information to completely ignoring the scope restrictions when
reusing cached DNS responses.

• We study the impact of ECS on DNS caching. Namely, the
amount of cached state at the resolver and the cache hit rate.
Since ECS limits reuse of cached records across client subnets,
one can expect some negative impact on cache size and hit rate.
However, we find these effects can be quite significant. We show
that the cache size needed by the resolvers to store results of
queries to a CDN can increase by an order of magnitude, and a
busy resolver may need around 4 times the cache size to store
responses in all interactions that involve ECS, while its cache
hit rates for these interactions declines to less than half of what
it would be without ECS.

• We offer several cautionary tales of real-life setups that may
not just diminish or even negate the ECS benefits but turn ECS
into an obstacle to effective user-to-edge-server mappings.

• Tangentially, we are, to our knowledge, the first to discover
and provide an initial glimpse into hidden resolvers between
forwarders and recursive resolvers [20, 22, 27], so called be-
cause they were previously believed to be unobservable. We
find that some hidden resolvers are far away from the clients,
and in fact not infrequently (in 8% of the cases we observe)
are farther away from the clients than the recursive resolvers.
Since many resolvers derive ECS prefixes from the IP address of
the immediate source of the queries received, hidden resolvers
are one example of a setup where ECS may be detrimental for
user-to-edge-server mapping by CDNs.
The rest of the paper is organized as follows. We briefly discuss

related work in Section 2, the terminology we use in Section 3, and
our datasets that we use in this work in Section 4. Then, we expand
on each aforementioned contribution in Sections 5 - 8. Finally, we
offer concluding thoughts in Section 10.

2 RELATEDWORK
Several studies have investigated ECS from different perspectives.
In [4, 30], the authors show how ECS can be used from a single
vantage point as a measurement tool to study the deployment of
ECS adopters (such as Google). In our work, we look at the ECS-
related behavior of recursive resolvers and some ECS implications
for DNS caching. Chen et al. [6] study the impact of enabling ECS
on mapping end-users to edge-server from Akamai’s perspective.
The authors show that ECS deployment has improved the laten-
cies between end-users that use public resolvers and their edge
servers by 50%, at the cost of 8 times increase in the number of DNS
queries their authoritative DNS servers receive from those public
resolvers. In our work, we consider another ECS overhead, namely,
the recursive resolvers’ cache size, and identify situations where
ECS can lead to suboptimal mapping. Calder et al.[5] study ECS
adoption by recursive resolvers from a cloud provider perspective,
while our study focuses on the ECS behavior by those recursive re-
solvers that did adopt ECS. Kintis et al. [21] discuss the privacy and
security of ECS including the erosion of privacy for Internet users
and facilitation of running selective cache-poisoning attacks to

target specific subnets/regions. Vries et al. [12] use 2.5 years of pas-
sive ECS-enabled queries to study Google Public DNS. The authors
show that DNS traffic to Google Public DNS is frequently routed to
datacenters outside the country even though a local datacenter is
available in country. Moreover, they uncover a new privacy risk of
ECS when mail servers are configured to use Google Public DNS,
involving mail servers revealing the domains of their email senders
through Google to authoritative DNS servers. While some privacy
leakage is an inherent cost of ECS, we show that some resolvers
erode user privacy unnecessarily via probing strategies they use to
detect ECS-enabled authoritative nameservers.

3 TERMINOLOGY
In this paper, we refer to DNS queries that include an ECS option
as “ECS queries”, and to DNS responses with an ECS option as
“ECS responses”. We call resolvers that directly interact with the
authoritative nameservers “egress resolvers” or simply “recursive
resolvers”. The resolvers that receive queries directly from user de-
vices and end hosts are called “ingress resolvers”. Ingress resolves
often act as forwarders: they take a query from an end host and
forward it to an egress resolver, then forward a response from the
egress resolver back to the end host. There are also many ingress
resolvers that act as egress resolvers as well, i.e., they both take
queries from the end hosts and interact with authoritative name-
servers directly. Further, in some deployments an ingress resolver
routes its queries to an egress resolver through (a chain of) inter-
mediaries called “hidden resolvers”.

4 DATASETS
In this study, we consider four datasets: (i) one day of DNS traffic
logs from a major CDN’s authoritative DNS servers (CDN dataset),
(ii) queries arriving at our own experimental authoritative name-
server as the result of a full DNS scan of the IPv4 address space with
DNS queries for names within our own DNS zone (Scan dataset),
(iii) traces of traffic from a major public DNS service to a major
CDN’s authoritative nameservers (Public Resolver/CDN dataset),
and (iv) logs of all DNS traffic to/from a single busy recursive
resolver (All-Names Resolver dataset).
CDN Dataset: The CDN dataset is derived from aggregated DNS
query logs from all authoritative nameservers of a major CDN. The
CDN uses whitelisting in handling ECS queries, which means that
the CDN only considers the ECS option in queries from, and in-
cludes the ECS option in its responses to, pre-approved (“whitelisted”)
resolvers. Queries from non-whitelisted resolvers are handled as
if the CDN did not adopt ECS: ECS options in these queries are
silently ignored and responses provide no indication that ECS is
supported. Whitelisting a resolver involves human negotiation and
business agreement between the resolver’s operator and the CDN.
We collect one day of logs, November 6 2018, which contain DNS
queries from 3,741,983 resolvers. Of these over 3.7M resolvers, only
7737 resolvers may be ECS-enabled (i.e., send at least one ECS
query during that day), including 3590 whitelisted and 4147 non-
whitelisted resolvers. For the purpose of this study, we extract the
DNS interactions involving ECS-enabled non-whitelisted resolvers.
The resulting dataset contains 1.5B queries, including 847M with
an ECS option. The 4147 different IP addresses (4002 IPv4 and 145
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IPv6) belong to 83 different ASes. 3067 IP addresses belong to a
single AS, which we refer to as the “dominant AS” below.
Scan Dataset:We collect this dataset by scanning the IPv4 address
space with DNS queries for hostnames from our own domain and
record the queries that arrive at our experimental authoritative
nameserver. Following a technique from [10], we use hostnames
that encode the IPv4 address being probed, which allows our au-
thoritative nameserver to associate the discovered ingress resolvers
with the egress resolvers they employ. We use queries without
an ECS option because most of the open DNS resolvers are home
wifi-routers [27] with simplified DNS functionality and may be un-
able to handle, or blindly forward, an unknown option. Either case
would lead to inaccurate detection of ECS support. We configure
our authoritative nameserver to respond to queries carrying an ECS
option with scope length L = S −4, where S is the ECS source prefix
length from the query. Responses to non-ECS queries carry no ECS
option (per the RFC). We reiterate that, while this scan leverages
open ingress resolvers, most of these resolvers are actually simple
forwarders that send incoming queries to their recursive resolvers
for processing, often the default ISP-provided resolvers, which are
typically closed to external queries. These closed resolvers are in-
cluded in our analysis.

The scan was conducted from a machine on our campus network
using a Python script that issued 25K DNS queries per second (the
rate restriction imposed by the university’s network administrators).
We also ran the PF_RING variant of tcpdump on both the scanning
machine and the authoritative nameserver to capture the DNS
queries and responses. The scan ran from Feb 22 to Feb 23, 2019
and took 42 hours to complete. We identified 2.743M open ingress
resolvers in our scan, which is roughly in line with the number
reported in [28]1. Of this number, the queries from 1.53M open
ingress resolvers arrived at our authoritative nameserver with an
ECS option added, indicating they use ECS-enabled egress resolvers.
These 1.53M ingress resolvers are spread across 7.9K autonomous
systems (ASes) and 195 countries, and employ 1534 egress resolver
IP addresses that support ECS. Google Public DNS is the largest
contributor of recursive resolvers accounting for 1256 IP addresses.
The remaining 278 recursive resolver IP addresses belong to 45 ASes,
with Chinese ISPs being the largest contributor responsible for 19
ASes. The dataset is available on request. Although the apparent
skew in ECS-enabled egress resolvers toward Google and China
might give an impression of a bias in the dataset, this is not the case
here. We note that the dominant AS from the CDN dataset is also
Chinese. Because of the global reach of the major CDN that delivers
a large portion of all Web traffic, we are confident that what we
observe in both the CDN and Scan datasets is that two operators
– Google and one Chinese operator – dominate the ECS-adopting
recursive resolvers. In other words, this is the state of ECS adoption,
not a skew in either dataset. The apparent skew in ECS-enabled
egress resolvers toward China confirms the similar finding in [5].
Public Resolver/CDN Dataset: This dataset contains DNS traffic
logs from a major CDN’s authoritative nameservers for ECS queries
arriving from a major public DNS service that is whitelisted for ECS

1The number of open resolvers on the Internet is decreasing. The openresolverproject.
org used to show a longitudinal graph but the site is no longer up. Still, we note that
[27] found over 30M open resolvers in 2012, vs. around 10M observed by [3] in 2016,
vs. only 2.74M we observe now.

support by the CDN. The dataset covers 3 hours during the busy
time of the day in the Americas, between 00:00:00 - 03:00:00 UTC
on March 1, 2019, and includes 3.8B A/AAAA queries from 2370
different resolver IP addresses. All queries carry the ECS option
and all responses include a non-zero scope prefix length.
All-NamesResolver Dataset: This dataset is DNS traffic collected
from a busy recursive resolver instance of an anycast DNS resolu-
tion service. The service accepts client queries at anycasted front-
ends, which forward these queries to the egress resolvers while
adding an ECS option carrying clients’ source IP addresses. An
egress resolver issues queries to authoritative DNS servers and re-
turns the responses, along with the authoritative ECS scope, to the
front-ends. The All-Names Resolver dataset contains all queries and
responses exchanged between front-ends and one egress resolver
where the responses include an ECS option with non-zero scope
prefix length. The unique feature of the dataset is that it contains
both the client IP address and the authoritative ECS scope. The
dataset, collected for 24 hours starting from 09:00 UTC on March
27, 2019, contains 11.1M A/AAAA queries and responses coming
from 76.2K different client IP addresses (37.4K IPv4 and 38.8K IPv6
addresses) which belong to 15.1K different client subnets (12.3K /24
IPv4 client subnets and 2.8K /48 IPv6 client subnets). The queries
are for 134925 unique hostnames from 19014 unique second-level
domains2.

5 DISCOVERING ECS-ENABLED RESOLVERS
Our CDN and Scan datasets represent two orthogonal methodolo-
gies to discover ECS-enabled resolvers - using passive observations
from a busy authoritative nameserver perspective and using active
measurements. Both can miss resolvers but an argument can be
made that both may catch a large number of them. Indeed, the
passive method may miss a resolver that never needs to resolve a
domain from the authoritative nameserver’s zone during the obser-
vation period, but for a busy authoritative nameserver (such as a
major CDN), one can assume that, given a sufficient observation
time, many resolvers will have at least some of its clients access
at least some URLs accelerated by the CDN. Similarly, the active
method will miss resolvers that are not accessible through any open
ingress resolvers, but it is conceivable that – given millions of open
ingress resolvers – many large resolvers would be used by at least
one open ingress resolver.

The number of non-Google ECS-supporting egress resolvers that
we found through our scan is lower than the number in the CDN
dataset (278 vs 4147). Moreover, of the resolvers discovered by the
scan, most (234 out of 278) are also present in the passive logs.
Clearly, between the above reasons for missing ECS resolvers, the
active method is impacted more. In addition, there can be several
further reasons for this difference. First, some recursive resolvers
(like OpenDNS [14]) maintain a whitelist of domains/nameservers
to which it sends ECS-enabled queries. The CDN domains are more
likely to be whitelisted by such resolvers while our experimental
domain is likely not as we did not submit any whitelisting requests.
Second, our authoritative nameserver is IPv4-only and would miss
IPv6 recursive resolvers (there are 145 IPv6 ECS-enabled resolvers

2Second-level domains, or SLDs, in DNS denote the two most senior labels in a host-
name, e.g., cnn.com, or ac.uk.

openresolverproject.org
openresolverproject.org
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in the CDN dataset). Third, one can imagine that a recursive re-
solver might only send ECS queries on behalf of whitelisted ingress
resolvers (e.g., from those users who explicitly opt-in, since using
ECS entails privacy implications). Our scan may miss such a re-
solver. Overall, between a large-scale passive observation and a
large-scale active measurement, the former is more effective at dis-
covering resolvers of interest. With the decreasing number of open
resolvers, the utility of the active measurements will decline further.
Still, although incomplete, the active dataset allows us to to study
more closely ECS-related aspects of resolver behavior, using the
recursive resolvers accessible externally (either directly or through
open ingress resolvers) as an example.

6 ECS BEHAVIOR OF RESOLVERS
This section considers strategies the ECS-enabled resolvers use
for deciding whether to include an ECS option in their queries
to authoritative nameservers, the ECS source prefix length they
use when they do send the option, and how they use the scope
prefix length returned by the authoritative nameservers in control-
ling caching. The first two aspects affect the degree to which the
resolvers reveal clients address information and the third aspect
assesses if the resolvers implement ECS cache control prescribed
by the authoritative nameservers correctly.

6.1 ECS Probing Strategies
RFC 7871 recommends that recursive resolvers not send ECS op-
tions blindly with every DNS query. Indeed, sending an ECS option
to an authoritative nameserver that does not support ECS need-
lessly reduces privacy. Additionally, some authoritative nameserver
implementations that do not support the ECS option have var-
ious bugs that result in dropped queries, and nameservers that
do not support the EDNS0 mechanism in general [11] will return
FORMERR responses. RFC 7871 specifies two strategies that a re-
cursive resolver can employ to decide whether to include ECS data
in queries to a given authoritative nameserver. The first strategy
is probing for ECS support: a recursive resolver can periodically
send an ECS query (e.g., hourly or daily) and omit the ECS data for
subsequent queries if the response returned by the authoritative
nameserver doesn’t have a valid ECS option. The second strategy
is to maintain a whitelist of authoritative nameservers or zones to
which the resolver will send the option. The second strategy can
reduce the complexity associated with probing and improve privacy
as recursive resolvers would send client subnet information only to
authoritative nameservers that are known to use this information
in generating a response. However, maintaining a whitelist is not
scalable as it requires out-of-band interaction between the resolvers
and authoritative nameserver, and the whitelist can quickly become
stale as the authoritative nameservers supporting ECS may change
with time.

Since the major CDN’s authoritative nameservers only respond
to ECS-enabled queries from whitelisted resolvers, it appears as a
non-ECS supporting site to non-whitelisted resolvers included in
the CDN dataset. Thus, the CDN dataset reflects the strategies of
these resolvers in probing authoritative nameservers whose ECS
support is either unknown or which previously were found to

not support ECS. We identify four distinct behavior patterns for
including the ECS option.

First, 3382 out of 4147 resolvers in the CDN dataset send 100%
of their A and AAAA queries with an ECS option, including all
the resolvers from the dominant AS and 287 out of 1,080 resolvers
from non-dominant ASes. These resolvers either maintain a per-
authoritative nameserver whitelist and have whitelisted the CDN’s
authoritative nameservers, or send the ECS option indiscriminately
for all A/AAAA queries to all authoritative nameservers. We are
unable to distinguish between these possibilities.

Second, 258 resolvers send ECS queries consistently but only for
specific hostnames. Furthermore, they send repeated queries for
these hostnames within the TTL periods, evenwhen the TTLs of the
responses are very short, e.g., 20 seconds. Given past findings that
resolvers are unlikely to evict records quickly or further shorten
such short TTLs [27], it appears that these resolvers disable or
limit caching for these hostnames. We have no speculation for the
reasons behind this behavior except that perhaps these resolvers
select certain hostnames for ECS probing and conduct the probing
regardless of the cache hits.

Third, we find 32 resolvers that send ECS queries at the interval
of a multiple of 30 minutes, and non-ECS queries otherwise. More-
over, we observe that all of the probes are for a single query string
and carry the loopback IP address as client subnet information.
The use of the loopback address for ECS probing is an interesting
approach as it avoids revealing any real client information unneces-
sarily, before the ECS support by a given authoritative nameserver
is determined. However, as discussed in Section 8.1, this may cause
major confusion, and very poor edge server selection, at the author-
itative nameservers (assuming the probing queries are triggered
by real client queries). A better approach to accomplish the same
goal is to use the resolver’s own address in the ECS option. The
RFC already suggests this as an option for queries that arrive at
the resolver with source prefix length 0. We recommend to use
this approach for probing and make it mandatory. Further, since
a loopback could be technically viewed as one the resolver’s own
addresses, the RFC should clarify that by “own address” it means
the public IP address the resolver uses to send the query.

Fourth, 88 recursive resolvers consistently send ECS-enabled
queries for specific hostnames as in the second category above, but
not within a short (i.e., at most one minute) time window from a
previous query for the same name. We speculate these resolvers
include ECS in their queries for specific hostnames on a cache miss.

The remaining 387 recursive resolvers send ECS-enabled queries
for a subset of hostnames and on a subset of queries for those
hostnames. From our dataset, we are unable to discern a pattern to
their probing behavior.

Finally, we have observed that some resolvers send client subnet
information unnecessarily, for queries that are unlikely to be an-
swered based on ECS information, such as NS queries, which the
RFC recommends to be answered with zero scope. We were curious
if any resolvers violate the RFC outright by sending ECS queries to
root DNS servers. We analyze 24-hours of logs from one instance
of the A-root server using DITL data from April 2018 (the latest
DITL data available [13]) and do find 15 resolvers exhibiting this
erroneous behavior.
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Source Prefix # of Resolvers # of Resolvers
Length (Scan dataset) (CDN dataset)

18 3
21 60
22 8 19
24 1384 757

24,25,32/jammed last byte 1
24,32/jammed last byte 3

25 1 1
25,32/jammed last byte 78
32/jammed last byte 130 3002

32 221
32 (IPv6) 28
44 (IPv6) 60
48 (IPv6) 56
56 (IPv6) 433 4
64 (IPv6) 1

64,96,128 (IPv6) 3

Table 1: ECS source prefix lengths. The rows sum up tomore
than the total number of recursive resolvers because some
resolvers convey both IPv4 and IPv6 source prefixes.

6.2 Prefix Source Lengths
A resolver needs to make a policy decision on the length of the ECS
prefix to be conveyed to authoritative nameserver. The longer the
prefix the higher its utility for user mapping but the greater the
privacy erosion. RFC 7871 [9] recommends that recursive resolvers
truncate IPv4 addresses to at most 24 bits and IPv6 addresses to at
most 56 bits in the source prefix to maintain client privacy.

We observe that the ECS source prefix length sent by recursive
resolvers varies. Table 1 shows the number of recursive resolvers
that sent specific source prefix lengths in the Scan and CDN datasets.
While all recursive resolvers in the Scan dataset sent only a sin-
gle source prefix length per IP version, we observe that in the
CDN dataset 82 recursive resolvers sent multiple IPv4 source prefix
lengths, and 3 recursive resolvers sent multiple IPv6 source prefix
lengths in different queries. We include in the table the combina-
tions of source prefix lengths observed from these resolvers. A row
for a given combination lists the number of resolvers that sent every
prefix length in the combination. In the Scan dataset, we find the
vast majority of the resolvers follow the RFC recommendation and
send source prefix length 24. However, a possible sense of content-
ment can be deceptive as these are mostly Google resolvers. Almost
half of non-Google ECS resolvers do not indicate any truncation of
user IP addresses at all. The vast majority of these (118 out of the
130) are in Chinese ASes. The CDN dataset shows similar results
as it does not include Google’s queries to inflate the number of /24
prefixes. Moreover, the resolvers sending /32 prefixes include all
3067 resolvers from the dominant AS, which also happens to be
from China. It appears that this aspect of ECS behavior is especially
common among Chinese ISPs.

At a first glance, the resolvers sending /32 prefixes appear to ig-
nore the above RFC recommendation on client privacy preservation.
However, we find that all 130 such resolvers in the Scan dataset, and
3084 out of 3323 such resolvers in the CDN dataset (including 2912
from the dominant AS), convey the client IP addresses with the
lower byte of the address set to a fixed value, mostly 0x01 and some
0x00. Thus, these resolvers effectively reveal only 24 senior bits of
the client address, even though the source prefix length is 32. Still,
this is an incorrect implementation of the RFC recommendation
and provides misleading information to authoritative DNS.

In addition, there is a sizable number of resolvers in the CDN
dataset that submit 25-bit prefixes, violating the RFC-recommended
24-bit maximum. Because BGP routers typically limit advertised
prefix lengths to at most 24 bits [29], such specific ECS prefixes
add little benefit and unnecessarily erode client privacy. We con-
sider implications of using fewer than 24 bits in ECS prefixes in
Section 8.3.

Finally, we note that some recursive resolvers sent IPv6 prefixes
in the ECS option and in many cases those prefixes included more
than 48 bits of the client IP address. Research [25] shows that this
may not be sufficient to anonymize many IPv6 clients depending
upon the address assignment practices in use. Thus, these recur-
sive resolvers may be eroding client privacy as well even if they
follow the RFC guidance (which recommends 56-bit prefixes or,
presumably, less).

6.3 Caching Behavior
In this section, we investigate how ECS-enabled recursive resolvers
handle caching of DNS records in the presence of the ECS option
and, specifically, whether these resolvers honor cache restrictions
imposed by ECS scope in authoritative responses. Not following
these cache restrictions can interfere with the authoritative name-
servers’ traffic engineering policies that ECS is supposed to facili-
tate.

6.3.1 Methodology. Our general approach involves delivering pairs
of queries for our own domain, with different client subnet infor-
mation, to the ECS-enabled recursive resolvers, and returning re-
sponses with specially selected scope prefix length values. The first
query populates the resolver’s cache, and the second tests whether
the resolver treats it as a hit or a miss, thus assessing if resolver
respects the caching restrictions imposed by the ECS scope from
the response. The method used to deliver the pair of queries to the
recursive resolver depends upon its accessibility. We are able to
study the caching behavior of various recursive resolvers using the
following techniques:

For recursive resolvers egressing resolution paths that accept ar-
bitrary ECS prefixes we submit with our queries, we deliver queries
with our chosen ECS source prefixes either directly (if the recur-
sive resolver is open) or through the forwarders that use them. We
find 32 recursive resolvers to be amenable to this measurement,
including 24 open resolvers with which we could interact directly
and 8 closed resolvers accessible through a forwarder that passed
along our arbitrary ECS prefixes, which were then accepted by the
resolvers and used in the resolvers’ own queries to our authoritative
nameserver.

Our next technique leverages two open forwarders that use the
same recursive resolver to deliver our queries. Specifically, for the
purpose of our experiment, we need the two forwarders to have
different /24 prefixes but share the same /16 prefix. We find 164
resolvers with appropriate forwarders and thus amenable to this
technique.

Finally, when the resolution path includes hidden resolvers (see
Section 8.2 for details on our hidden resolver detection), we attempt
to use two open forwarders that are behind two hidden resolvers
that are in different /24 prefixes and share a /16 prefix to deliver
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our queries. There are 7 resolvers with suitable hidden resolvers
for this technique.

In summary, across the above cases, we are able to deliver two
successive queries to 203 resolvers such that the resolver treats the
two queries as if they arrived from clients in different /24 but the
same /16 address blocks. In addition, for the 32 resolvers amenable
to our first measurement technique, we can explore their handling
of ECS prefixes of arbitrary lengths. One of these 32 resolvers turned
out to be in Google’s IP address space, although it is not part of
Google Public DNS according to their published list of IP blocks
used for this purpose or observed in the CDN dataset – and was no
longer accessible by the time we wanted to notify Google3.

Overall, of 278 non-Google egress resolvers in the Scan dataset,
there were 76 recursive resolvers that we could not study, including
64 that did not have appropriate forwarders or hidden resolvers
and 12 for which forwarders became unavailable in the time lag
(two weeks) between the scan and the experiment in this section.

6.3.2 Results. Using the above techniques, we conduct two experi-
ments. First, we deliver pairs of successive queries with different /24
but the same /16 ECS prefixes for our own hostname to each recur-
sive resolver, and when they arrive at our authoritative nameserver,
return the scopes /24, /16, and /0. To avoid cached records from one
trial affecting other trials, we use a unique hostname for each trial.
If the recursive resolver honors scope restrictions as prescribed in
the RFC, it will not use the cached record from the first query to
answer the second query for scope /24 but will reuse the cached
record for scope /16 and /0. Thus, with a compliant resolver, we ex-
pect our authoritative nameserver to see both queries for scope/24
and only the first query for scopes /16 and /0. Second, for the 32
resolvers which accept an arbitrary ECS prefix from our queries,
we explore how these resolvers handle ECS prefixes and scopes
that are longer and shorter than 24.

Based on these experiments, we classify the resolvers into one
of the following categories:
• We find 76 resolvers with correct behavior: they honor the
scope from the authoritative answers and never submit ECS
prefixes longer than 24 to authoritative nameserver, even when
the resolvers accept arbitrary ECS prefixes from the clients, and
even when these prefixes are longer than /24 (in which case
they truncate the excessive bits).
This is proper behavior as, according to the RFC recommenda-
tion, recursive resolvers should not convey more than 24 bits
in ECS prefixes to preserve the client privacy. The resolvers in
this category include 9 recursive resolvers that accept arbitrary
ECS prefixes. For these resolvers, we are able to also test that
they enforce an RFC stipulation that the scope length in the
responses cannot exceed the source prefix length in the query.

3At the time of the study, Google’s anycast front-end did not accept ECS options
from incoming external queries and instead derived ECS prefix from the IP address
of the sender of the query. However, during the preparation of the camera version,
we noticed that Google has returned to its previous behavior reported in [30] in its
interactions with non-whitelisted authoritative nameservers, namely that it passes the
ECS submitted by the external queries along to our authoritative nameserver. Thus,
we could use our first technique to directly measure the behavior of at least some
of Google’s egress resolvers and confirm that they exhibits the same ECS caching
behavior as the resolver reported in the paper, i.e., that it shows the correct ECS
behavior.

All 9 resolvers correctly apply scope length 24 to control the
reuse of their cached records, even when we return a greater
scope length. Finally, these 9 resolvers include the one Google
resolver that we can study.

• On the other hand, we find 103 recursive resolvers, or over
half of all recursive resolvers we could study, that don’t control
caching based on scope at all: they reuse cached responses irre-
spective of the clients’ addresses, as if they did not understand
ECS. This is particularly interesting because either (i) recursive
resolver adds ECS to queries but then ignores it or (ii) some
hidden resolver adds ECS and the resolver does not understand
it at all.

• Among the 32 resolvers willing to accept arbitrary ECS prefixes
from the queries sent to them, we find 15 open resolvers accept-
ing ECS prefixes longer than /24, and caching the responses
based on correspondingly longer scopes. This behavior runs
counter to the RFC recommendation on client privacy.

• Conversely, another 8 resolvers among the 32 resolvers accept-
ing arbitrary ECS prefixes cache responses based on subnet
granularity coarser than /24. Specifically, these resolvers impose
the maximum cacheable prefix length of 22. When receiving
queries with source prefix length longer than 22, the recursive
resolver only conveys the first 22 bits to our authoritative name-
server. In addition, they impose scope length 22 to control the
reuse of their cached records even whenwe return greater scope
length. Such behavior can be lead to highly suboptimal user-to-
edge-server mapping with some CDNs (as we will discuss in
Section 8.3).

• Finally, we find one misconfigured resolver that sends an ECS
prefix from a private address block (10.0.0.0/8) even after receiv-
ing answers from our authoritative nameserver indicating its
ECS support, and even when relaying queries from forwarders
that share with the resolver the /24 address prefix (so there are
no privacy issues). Moreover, from coordinated queries to two
forwarders using this resolver, we observe that this resolver
does not handle the ECS scope properly, as it does not cache
(or does not reuse) responses with scope prefix length zero.

7 ECS IMPACT ON CACHING
ECS facilitates fine-grained server selection by DNS, with responses
tailored to different clients. In doing so, it limits the resolver’s ability
to reuse a cached DNS record to serve multiple clients and thus can
increase the cache size needed to avoid evictions (since multiple
records for the same question can co-exist in cache if the question
came from different client IP prefixes) and reduce the cache hit
rate. This section quantifies these tendencies. Using the Public
Resolver/CDN dataset, we examine the ECS impact on cache size of
a large number of resolvers4 but only considering accesses of the
CDN-accelerated content. Using the All-Names Resolver dataset,
we measure the caching impact of ECS (on both the cache size and
hit rate) due to all DNS queries/responses that carry ECS but only
considering a single resolver.

4As a reminder, while the dataset represents queries from a single major public resolu-
tion service, there are a large number of individual egress resolvers in the dataset. We
consider cache blow up per each such resolver.
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Figure 1: Distribution of the blow-up factor in the cache size
for various TTL values.

7.1 Resolver Cache Size
As mentioned, we expect that when a recursive resolver enables
support for ECS, the size of its cache state will grow. We assess
by how much the cache grows using two datasets that offer com-
plementary perspectives. We use the Public Resolver/CDN dataset,
which records interactions between a major resolution service and
a major CDN, to assess the increase in resolver cache sizes due to
accesses of the CDN-accelerated Internet content. We complement
these results with the analysis of the All-Names Resolver dataset,
which allows us to quantify the increase of a resolver cache size
needed to store responses in all interactions that involve ECS, in-
cluding all authoritative DNS servers that support ECS. We use
trace-driven simulations to conduct these analyses. In our simu-
lations, we assume that the recursive resolvers adhere to the TTL
value returned by the authoritative nameserver (i.e., retain the
records for no longer than the TTL) and do not evict records from
the cache before they expire.

We begin with the Public Resolver/CDN dataset. The public DNS
service in question employs a large number of individual egress
resolvers. Our logs contain 2370 different recursive resolver IP
addresses with varying traffic volume per IP address. We assume
each resolver maintains its own isolated cache (no cache sharing
among the resolvers). The CDN and the public DNS service involved
both support ECS in their DNS interactions, and the dataset includes
the ECS options (both source prefixes of the queries and scope prefix
lengths of the responses) exchanged in the DNS interactions.

To simulate the cache of the resolvers without ECS, we replay the
logs disregarding the ECS information. In other words, we assume
that once a given resolver records the answer for a given query, any
subsequent queries would be answered from the cache, irrespective
of the client, for the duration of the TTL, with only the initial
answer occupying cache space. To simulate the cache with ECS, we
replay the logs while obeying the ECS source and scope prefixes
listed. The authoritative nameservers always return a 20 second
TTL in responses and our simulated recursive resolvers remove
records from cache at that TTL, i.e., 20 seconds after insertion.

For each recursive resolver, we calculate the cache blow-up fac-
tor as the maximum cache size with ECS at any time during the
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Figure 2: Cache size blow-up factor for random fractions of
the client IP addresses.

simulation divided by the maximum cache size without ECS. Fig-
ure 1 shows the CDF of the blow-up factor for all the recursive
resolvers in the “20 Sec. TTL” line. We find that the maximum
cache size blow-up factor is 15.95 and 50% of the resolvers have a
blow-up factor of more than 4, meaning that at peak cache usage
the resolvers held 4x more records from the CDN with ECS than
they would have held without ECS.

Next, we note that TTL also has an impact on cache size. The
CDN records in our simulation have a TTL of 20 seconds but many
DNS records in the wild have longer TTLs. We repeat the simula-
tions using TTLs of 40 and 60 seconds in the remaining lines of
Figure 1. The maximum cache size blow-up factor grows to 23.68
with 40 second TTLs and 29.85 with 60 second TTLs. We anticipate
that the cache size blow-up factor will continue to increase with
TTL values greater than 60. Supporting ECS increases query vol-
ume for both recursive resolvers and authoritative nameservers [6].
Increasing TTL values to reduce the load on authoritative name-
servers, however, will further exacerbate the impact of ECS on the
recursive resolvers’ cache size.

The above results demonstrate the ECS impact on recursive
resolver cache size due to accesses to content delivered by a single
CDN. However, recursive resolvers resolve hostnames for many
domains, supported by different CDNs with varying ECS and TTL
behavior. Next, we study the impact on the cache size of a single
recursive resolver considering its interactions with all authoritative
nameservers with which the resolver exchanges ECS information.
We use the logs from the All-Names Resolver dataset to run trace-
driven simulations of the resolver cache similar to above, using
real-life authoritative ECS and TTL information as they appear in
the log. We find that the cache size blow-up factor for this resolver
is 4.3. Note that the cache size blow-up factor is calculated only
on records that carry ECS. The recursive resolver can send queries
without ECS and/or receive responses without ECS, thus the blow-
up factor on the overall resolver cache may be smaller than what
we report here.

As part of an anycast DNS resolution service, the resolver in
the All-Names Resolver dataset receives DNS queries from a large
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Figure 3: Cache hit rate for various random fraction of the
client IP addresses.

distributed set of clients. As noted in Section 4, it has 76.2K clients
in 12.3K /24 IPv4 and 2.8K /48 IPv6 client subnets. We would like
to assess the blow-up factor for recursive resolvers with smaller
client populations. To this end, we simulate a public resolver with a
smaller client population by randomly sampling client IP addresses
in the dataset. Using a random subset of clients reflects public
resolver usage, where clients individually decide to use this resolver
regardless of their subnet.

We re-run our simulations only using queries from the random
samples of client IP addresses in the dataset, where we vary the
fraction of all clients in the sample. For each fraction of clients, we
run simulations with three different random samples of client IP
addresses and report the average values.

Figure 2 shows the cache size blow-up factor for different frac-
tions of the client IP addresses. As we can see from the figure, there
is a clear relation between the blow-up factor in cache size and
the increase in the client population because having a diverse set
of clients results in caching several copies of the response for the
same question if the clients’ IP addresses are not covered by the
same ECS scope. In fact, the curve does not appear to flatten as the
fraction of clients reaches 100%. Thus, busier resolvers, with more
clients, than the resolver from the All-Names Resolver dataset are
likely to experience even larger blow-up factors.

In summary, large TTL values and a diverse client population
would result in a large increase of the cache size recursive resolvers
would need if they were to preserve low rates of premature cache
evictions observed recently [27]. Thus, supporting ECS entails re-
source cost for the operators who need to weigh these costs against
the benefits to clients’ quality of experience in deciding on ECS
adoption.

7.2 Cache Hit Rate
We now use the All-Names Resolver dataset to study the impact of
ECS on DNS cache hit rate. While this dataset only produces a point
assessment, it still reflects a concrete observation of an operational
busy resolver. Figure 3 shows the hit rate that a resolver would
experience when serving a random fraction of clients of a given
size without ECS (e.g., ignoring any ECS scope from authoritative

answers) and when obeying the ECS scope restrictions from the log.
The figure was obtained by trace-driven simulation of the logged
queries while obeying all authoritative TTLs from the log. Each
data point reflects the average values of three runs, using different
seeds for random client selection.

The results show a drop in hit rate due to ECS by more than
half, for all client populations. For the full client population, the
hit rate declines from around 76% to around 30%. Moreover, the hit
rate in the presence of ECS increases much slower than without
ECS as client population grows. The latter fact can be explained by
contradictory effects of the client population growth on the hit rate
under ECS. On one hand, as the number of clients grows, popular
hostnames are more widely shared, leading to higher hit rate (this
is the effect captured by the growing hit rate without ECS). On the
other hand, the larger client population is likely to be fragmented
among more /24 blocks, which would depress the hit rate in the
presence of ECS. It appears that the two tendencies largely cancel
each other.

8 ECS PITFALLS
ECS was proposed to improve the performance of end-users by
enabling authoritative nameservers to tailor a response based on
the topological location of the client’s subnet. However, we find
several types of real-life resolver setups that interact with ECS in
ways that diminish or negate its benefits and in fact can turn ECS
from a facilitator to an obstacle to proximity-based server selection.

8.1 Using Non-Routable ECS Prefixes
From our Scan dataset, we observe that a fraction of ECS-enabled
queries arrive at our authoritative nameserver with non-routable
IP addresses in client subnet information. Specifically, we observe
queries with the loopback and self-assigned address prefixes (most
commonly 127.0.0.1/32, 127.0.0.0/24, and 169.254.252.0/24). There
were 33 resolvers from 6 ASes with this behavior, including 27
resolvers from a single AS5. We suspected this may not be part of
the probing behavior we observed in the CDN dataset (Section 6.1)
because we observe these ECS prefixes repeatedly from the same
resolvers despite our authoritative nameserver responding to each
query with the ECS option. After investigating ECS functionality
of several resolvers, we found (and confirmed with the PowerDNS
community) that the PowerDNS recursor software [24] can exhibit
this behavior under some scenarios. Specifically, a private IP ad-
dress or loopback address is sent in an ECS query if (i) the resolver
receives a query from a client with source prefix length of 0 (in
which case, the RFC stipulates the resolver must either not include
any ECS option at all or include its own address information, al-
though in view of our findings the RFC should be more specific and
say explicitly this must be the public address used by the resolver to
send the query) or (ii) the resolver receives (ii) the resolver receives
a query from a client whose IP address is not whitelisted for ECS
usage.

We investigate whether sending such information to authorita-
tive nameservers can cause a confusion at the server side. We send

5Since, as discussed later, we found this behavior to be problematic, we notified the
administrators of the AS containing the majority of these resolvers of the issue.
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ECS Prefix First answer RTT Location
None 172.217.9.46 35 ms Chicago

/24 of src addr 172.217.8.206 35 ms Chicago
127.0.0.1/32 172.217.168.46 155 ms Switzerland
127.0.0.0/24 173.194.196.136 47 ms Mountain View, CA

169.254.252.0/24 216.58.223.142 285 ms South Africa

Table 2: Authoritative responses to queries for
www.youtube.com sent from Cleveland with unroutable
ECS prefix (RTT is the average of 8 pings).

five queries for www.youtube.com directly to Google’s authorita-
tive DNS server from a lab machine using dig, one query each using
no ECS, an ECS prefix matching the lab machine’s IP address, and
the three most common unroutable ECS prefixes mentioned above.
From the responses, we harvest the returned IP addresses of edge
servers that Google maps our lab machine to with the varying ECS
option. Note that sending a single query with each variation of ECS
option is sufficient because our lab machine interacts directly with
the authoritative name server and thus the responses represent
the answers that a real resolver would get when sending a similar
query, regardless of caching or any other implementation details at
the authoritative nameserver.

We receive the same set of 16 IP addresses for the first two
queries (in different permutations) but different sets of IP addresses
for the queries with unroutable ECS prefixes, and these sets do not
overlap with the 16-address set or with each other. Thus, sending
an unroutable ECS prefix results in different answers for Google’s
authoritative DNS server than the answers one would receives
without ECS or with ECS matching the source IP address.

We then test if the quality of user-to-edge-server mapping is
affected. Table 2 shows the ping RTT from the lab machine used
to issue the queries (located in Cleveland, OH) to the first IP ad-
dress returned by the authoritative nameserver and the location
of this IP address that we determine from the hostnames of the
nearby hops from traceroutes (the traceroute was unresponsive
near the address returned for the query with the 127.0.0.0/24 prefix,
and we geolocated this address using EdgeScape, a commercially
available geolocation service [15], instead). The RTT values reflect
the average of 8 pings. The table shows that sending no ECS or
ECS matching the lab machine’s IP address results in mapping to
a nearby edge server in Chicago. On the other hand, sending un-
routable ECS prefixes results in mapping across the globe. Clearly,
submitting unroutable ECS prefixes can result in a very substantial
penalty in mapping quality and must be viewed as a performance
bug6. To avoid negative impact on their clients, the resolvers should
either convey its own IP address in the ECS option or omit the ECS
option instead. We also believe that the RFC should explicitly direct
resolvers to use their own public IP addresses, the same that is used
to send the query, when they wish to insert an ECS option without
disclosing client information. This would eliminate grey areas and
avoid divergence in ECS implementations between resolvers and
authoritative nameservers.

6While the RFC recommends that authoritative nameservers treat unroutable prefixes
in queries’ ECS options as the resolvers’ own identity, it uses the word “SHOULD”,
and – as our findings show – not all servers follow this recommendation.

8.2 Using Hidden Resolvers
We noticed that around half of the ECS-enabled queries in our Scan
dataset carried an ECS prefix that covers neither the open ingress
IP address we probed nor the recursive (egress) IP address that
communicated with our authoritative nameserver. This suggests
that those IP addresses in the client subnet belong to intermediary
resolvers between ingress resolvers and recursive resolvers, often
referred to as hidden resolvers [20, 22, 27] because they were previ-
ously believed to be unobservable7. Thus, ECS can help to uncover
an additional component in the DNS ecosystem that was previously
hidden from observation. We find 32170 different potential hidden
resolver prefixes in the Scan dataset, representing 198 countries and
7.2K ASes8. Out of the 32170 prefixes, we find that 31011 prefixes
are conveyed by the resolvers of the major public DNS service.

We attempt to validate that the discovered ECS prefixes cor-
respond to hidden resolvers as follows. First, we exclude source
IP spoofing as a possible confounding factor because our scanner
received responses to most of the queries that discovered those
hidden ECS prefixes. Next, using the Public Resolver/CDN dataset,
we verify that the prefixes we discover from the Scan dataset belong
to actual hidden resolvers. We leverage the observation that the
major Public DNS service discards any ECS option in the incoming
queries and replaces it with the actual prefix of the query sender
before sending the query to the major CDN authoritative name-
servers9. Thus, the ECS prefixes in the Public Resolver/CDN dataset
represent actual query senders. It turned out that we could find
a vast majority of those presumed hidden ECS prefixes from the
scan dataset in the Public Resolver/CDN dataset. Specifically, we
find that out of the 31011 potential hidden prefixes conveyed by
the resolvers of the major public DNS service, 28892 prefixes are
present in the Public Resolver/CDN dataset. Similarly, 815 prefixes
out of the 1159 potential hidden prefixes conveyed by the other
resolvers (i.g., not belonging to the major public DNS service) are
present in the Public Resolver/CDN dataset. Overall, 29707 out of
32170 hidden prefixes in the Scan dataset are found in the Public
Resolver/CDN dataset and thus belong to actual resolvers.

Regardless, even if some of these ECS prefixes do not belong
to physical hidden resolvers but represent pre-configured ECS set-
ting in the egress resolver, an authoritative nameserver will use
this information when mapping the user to the nearest content
server. Therefore, we investigate whether these prefixes provide a
good approximation of the location of the open forwarders whose
queries contained those prefixes10. Since a forwarder may use sev-
eral hidden resolvers and a hidden resolver may use several re-
cursive resolvers, we consider unique combinations of (open for-
warder, hidden resolver, recursive resolver) in the Scan dataset.

7We caution against inferring the general prevalence of hidden resolvers from their
prevalence in the Scan dataset as the dataset can be biased from being limited to open
ingress resolvers.
8Since recursive resolvers report the hidden resolvers information at the /24 prefix
level, the actual number of hidden resolvers can be greater than 32170
9We also note that the major public resolver exhibited the same behavior with our
experimental authoritative nameserver at the time of the Scan experiment, i.e., it didn’t
accept ECS prefixes we submitted in our queries and replaced them with the source IP
address of the requester before sending them to our authoritative nameserver.
10An orthogonal question is whether the forwarders provide good approximation for
the end-device. While outside the scope of our work, we note that [27] found evidence
that most forwarders are residential networking devices and thus typically colocated
with end-devices.
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Figure 4: Distance between forwarders and hidden and re-
cursive resolvers (MP resolvers).

Using EdgeScape [15], we measure the distance between the for-
warder and the hidden resolvers as well as between the forwarder
and the recursive resolver. Given the prominence of the major
public resolver represented in the Public Resolver/CDN dataset (re-
ferred to in this section as “MP resolver” for brevity), we divide the
results into two cases, studying the major public resolver (referred
to in this section as “MP resolver” for brevity) separately from other
recursive resolvers.
Case 1 (MP resolvers):We find 725K unique (forwarder, hidden
resolver, recursive resolver) combinations where the recursive re-
solvers belongs to MP. We observe that in 57.7K (8%) combinations,
the hidden resolvers are farther away from the forwarders than
the recursive resolvers are. This means that a CDN’s edge server
selection without ECS, using the egress resolver location, would be
based on better understanding of the client location than with ECS,
using the hidden resolver location. In other words, ECS handicaps,
rather than facilitates, server selection in these cases by delivering
a worse client location approximation to the authoritative DNS.

To convey the extent of this problem, Figure 4 shows a hexbin
scatter plot of the geographic distances from the forwarder to the
hidden (F-H) and recursive resolvers (F-R). Points below the diag-
onal (8% of the combinations) indicate that the hidden resolver is
farther away from the forwarder than the recursive resolver. One
can see that the difference between these distances can be great, on
the order of thousands of kilometers. For instance, in one combina-
tion, we find that the distance between the forwarder and recursive
resolver is 0 km (as both are in Santiago, Chile). However, the hid-
den resolver is in Italy, 12000 km away from the forwarder. We
verified the correctness of geolocation by using traceroutes to the IP
addresses of the forwarder, hidden resolver (padding the ECS prefix
with random bits), and recursive resolver. Further, we observe this
same combination of the hidden and recursive resolvers in a query
in the Public Resolver/CDN dataset. Therefore, this example repre-
sents a configuration, verified to be in use, where ECS prevents the
CDN from providing any meaningful user-to-edge-server proximity
mapping.

Figure 5: Distance between forwarders and hidden and re-
cursive resolvers (non-MP resolvers).

Further, there are 9.7K (1.3%) combinations lying on the diagonal,
meaning that the forwarder is equidistant from the hidden and re-
cursive resolver. In these combinations, ECS – while not hampering
authoritative nameserver’s understanding of client location – does
not improve its understanding. Even when ECS is still helpful in the
presence of hidden resolvers, a hidden resolver can greatly diminish
ECS utility. Indeed, as the figure shows, among the 90.7% of the
combinations above the diagonal (i.e., where the hidden resolver is
closer than the recursive resolver to the forwarder and therefore
improves the approximation of the forwarder’s location), the hid-
den resolver can still be thousands of kilometers away from the
forwarder. ECS benefits would greatly improve if it would carry
the forwarder’s prefix rather than the hidden resolver’s. It may
appear that a way to achieve this is to adopt ECS along the entire
resolution path and make all resolvers along the path copy the ECS
prefix as they forward the query towards the authoritative name-
server. Unfortunately, to prevent spoofing, many recursive resolvers
(including the MP resolver at the time of the study) override any
ECS information in received queries with the ECS prefix derived
from the source IP address of the immediate query sender, before
submitting the query to the authoritative server. We conclude that
to obtain the most benefits from ECS, the users should connect
to ECS-enabled recursive resolvers directly, rather than through
intermediaries.
Case 2 (Non-MP resolvers): The non-MP resolvers exhibit the
same trends. We find 217K unique combinations of (forwarder,
hidden resolver, recursive resolver) with recursive resolvers that do
not belong to MP Public DNS. Of this number, 17K (7.8%) have the
egress resolver closer to the forwarder compared to hidden resolver,
entailing a detrimental effect of ECS on user mapping, 42.3K (19.5%
have the same distance from the forwarder to both hidden and
recursive resolvers (including 18.45K combinations where all three
parties are placed by EdgeScape in the same location), and the
remaining 157.7K (72.7)% combinations contain a hidden resolver
that is closer to, and hence provides better approximation for the
location of, the forwarder than the recursive resolver is. In other
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words, ECS improves the authoritative nameserver’s understanding
of the client location in only 72.7% of the combinations, has no effect
on this understanding in 19.5%, and worsens it in 7.8% of the cases.

Figures 5 shows the hexbin scatter plot for the distances between
the forwarders and their hidden and egress recursive resolvers. As
annotated on the figure, we observe many combinations where the
forwarder and recursive are nearby while the hidden resolver is
∼1000 km away. Similarly, we observe many combinations where
the forwarder and hidden resolver are nearby while the recursive
resolver is ∼1000 km away. We find that this combinations corre-
spond to recursive resolvers in Shanghai while the hidden resolver
and forwarder can be in either Beijing or Shanghai (the distance
between Beijing and Shanghai is ∼1000 km). There are also many
combinations where the distance from forwarder to recursive re-
solver is ∼2000 km which we find to be forwarders in Beijing and
recursive resolvers in Guangzhou. We believe that the prominence
of these distances is mostly a product of the skew in ECS support
towards China and the fact that Beijing, Shanghai and Guangzhou
are the three largest cities in the country. The overall distances be-
tween forwarders and resolvers, as well as location approximation
penalties due to hidden resolvers tend to be somewhat lower than
in the case of the MP resolver but are still substantial.

The overall take-away point from these results is that hidden re-
solvers can interact with ECS to negate ECS benefits and sometimes
even turn ECS from a facilitator into a handicap for the authoritative
nameservers’ ability to conduct effective traffic engineering. One
way to avoid potential performance degradation is for the parties
involved (ISPs, DNS resolution service provides, and client sites) to
consider carefully the relative location of clients, hidden resolvers,
and egress resolvers before adopting ECS, and either avoid using
hidden resolvers with misleading locations or avoid including ECS
prefixes for queries coming from those hidden resolvers. Another
way is to develop trust between hidden and egress resolvers (which
are sometimes operated by different organizations) so that hidden
resolvers would include ECS prefixes based on end-client subnets,
and egress resolvers would pass this information (provided it comes
from the trusted senders) to the authoritative nameservers, rather
than replacing it with prefixes based on the sender IP addresses.

8.3 Using Improper Source Prefix Length
As we observe in Section 6.2, different resolvers submit different
ECS prefix lengths with their queries. We already discussed that
usingmore than 24 bits in the ECS prefixes counters RFC recommen-
dation. We now investigate whether sending ECS source prefixes
with fewer than 24 bits would have an impact on the quality of
user-to-server mappings for the answers returned by authoritative
DNS servers. This question was previously considered by Otto et
al. through measurements embedded in an application on end-user
devices [23]. Based on the measurements of mappings by Google
authoritative DNS, the authors concluded that increasing the prefix
length from /16 to /24 provided only small extra benefits but also
noted that other CDNs may show different results. We consider
two major CDNs that support ECS from non-whitelisted hosts, de-
noted CDN-1 and CDN-2, and observe the impact of prefix length
is different from that reported in [23].
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Figure 6: Distribution of quality of mapping of a hostname
accelerated by CDN-1.
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Figure 7: Distribution of quality of mapping of a hostname
accelerated by CDN-2.

We use RIPE Atlas measurement platform [26], which provides
programmatic access to over ten thousand measurement points
throughout the world, to conduct our study. We randomly select
800 IP addresses of RIPE Atlas probes, resulting in a sample cov-
ering 174 countries and 599 autonomous systems. Because Atlas
does not support ECS queries, we use our lab machine to submit
repeated queries for two hostnames, one accelerated by each CDN,
directly to their respective authoritative nameservers. However,
to make the authoritative nameservers use probes’ location rather
than ours, we include into our queries ECS options with client sub-
net prefixes derived from the 800 IP addresses of our Atlas probe
sample. For each DNS response received, we leverage RIPE Atlas
SSL measurements to perform three certificate downloads from the
corresponding Atlas probe using the first IP address in the DNS
response, and use the median of the TCP handshake latencies as
our metric for the resulting user-to-edge-server proximity.

For CDN-1, with 24-bit prefixes of our 800 probe addresses, the
authoritative nameserver returns 400 unique first IP addresses in
their responses. However, with any shorter source prefixes (we
study prefix lengths between 16-24), the total number of unique first
IP addresses returned by the authoritative server falls drastically,
to between 5 and 14.
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Figure 8: CNAME flattening when accessing customer.com.

Figure 6 shows the cumulative distribution function (CDF) of the
median TCP handshake latencies for the hostname accelerated by
CDN-1, using the edge server obtained with an ECS prefix of a given
length. The figure shows a huge degradation in CDN-1 mapping
latency when reducing source prefix length from 24 to 23, while
further shortening of the prefix has no visible effect. Together with
the observation on the number of edge servers produced by different
prefix lengths, it appears that CDN-1 does not use proximity-based
server selection for prefixes shorter than /24.

Turning to CDN-2, we find that when sending source prefix
length values between 16-20 a single IP address is returned from
CDN-2 authoritative DNS server for all queries with scope prefix
length of zero. Using traceroute, we find that the IP address is in
Toronto, near our lab machine (located in Cleveland). Thus, CDN-2
appears to ignore the ECS information when source prefix length is
20 or less and use the IP address of the resolver that sends the query
as a proxy for the end-device location. However, as soon as the
prefix length reaches 21 or above, CDN-2 returns 41-42 different IP
addresses. Figure 7 shows the CDF of the median TCP handshake
latencies for the hostname accelerated by CDN-2, excluding the
results for source prefix length 16-19 because they are identical to
length 2011 We can see that using source prefix length of 21 and
longer have the same quality of mapping but dropping to /20 leads
to a dramatic penalty. It appears that CDN-2 leverages ECS prefixes
in its edge server selection for prefixes of at least 21 bits not for
shorter prefixes.

The results in this section bring interesting questions about
how resolvers should choose the prefix lengths when sending ECS
queries to CDNs. They could just blindly use the most specific pre-
fixes recommended by the RFC (/24), but in the case of CDN-2 this
would expose more client information than needed for proximity
mapping by the CDN – sending 21 bits would suffice. However,
sending any fewer than 24 bits to CDN-1 would negate any benefits
from ECS and then whatever client information is submitted in
fewer bits would still be exposed unnecessarily.

11We note a similarity of the CDFs in both CDNs.We explain it by the disproportionally
high representation of Europe in RIPE Atlas probes, where both CDNs have dense
footprint.

Furthermore, while the RFC suggests that the resolvers utilize
knowledge of their clients to use shorter source prefixes when
all addresses covered by these prefixes are known to be in the
same location, this recommendation assumes that the authoritative
nameservers would use whatever number of client subnet bits they
receive for server selection. The results from both CDNs above
show this assumption is not always accurate. Both CDNs appear
to stop using ECS once the source prefix length drops to a certain
limit.

On the balance, it would appear that using /24 for all ECS queries
is the most practical approach. An alternative would be to track the
source prefix lengths needed per CDN, or even per subdomain and
per client address block, since a CDN can in principle use different
prefix lengths for different subdomains and clients. This can get
complicated very quickly.

8.4 CNAME Flattening
The DNS standard [16] does not allow CNAME records to co-exist
with other record types at the same name. This poses a problem as
CNAME records are a common method to onboard traffic to a CDN
and content providers often desire for their content to be reachable
from the apex of their zones, e.g., example.com, which at a mini-
mum must have NS and SOA records. CNAME flattening [8, 18]
has emerged to circumvent this obstacle. With CNAME flattening,
when an authoritative nameserver receives a query for N1 that
it would normally redirect to a CDN by returning a CNAME N2
from the CDN’s domain, the authoritative server instead resolves
N2 itself by interacting with the CDN’s authoritative DNS on the
backend, and then returns the final A/AAAA record(s) of the edge
server(s) to the original querier. Thus, recursive resolvers query-
ing the authoritative DNS server receive A/AAAA record(s) for
N1, while N2 is invisible externally, outside the authoritative DNS
servers of the website and the CDN involved. In this section, we
demonstrate how careless implementations of CNAME flattening
may eliminate the ECS benefits even when ECS is supported by
both the recursive resolver and the CDN.

We use an imaginary domain “customer.com” in this discussion,
as our goal is to draw attention to this pitfall and not to single
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out one of the websites that fell into it. However, this discussion
represents a real website of a prominent content provider that
we tested. The DNS zone is hosted with a major DNS provider
while its web acceleration is provided by a major CDN. The web
site can be accessed either via the apex of the zone, i.e., through
URL http://customer.com (using CNAME flattening) or with www
prepended, with URL http://www.customer.com.

We access customer.com from the Chrome browser using a major
Public DNS service as our recursive resolver as this Public DNS
and the major CDN are known to support ECS with one another.
We use Wireshark to collect a packet trace while loading the page.
The order of actions is depicted in Figure 8 and is as follows: (i)
(Steps 1-6) The client resolves customer.com to the IP address E1
of an edge server of the major CDN via CNAME flattening; (ii)
(Steps 7-8) The client performs HTTP interaction with E1, receiving
HTTP redirect to www.customer.com. This incurred 125 ms to
complete TCP handshake and 650ms in total elapsed time from step
1. (iv) (Steps 9-14) The client resolves www.customer.com, using
the regular CNAME-based DNS redirection, to the IP address of a
different edge server of the major CDN, and finally (v) (Not shown
in the figure) the HTTP download of the page from the second IP
address, taking 45ms for the TCP handshake. Note that when the
client accesses the same page using www.customer.com directly, it
would only execute phases (iv) and (v).

From the results, we can infer that the mapping of customer.com
to edge server E1 is poor (likely due to the absence of ECS in the
DNS transaction in steps 3-4 between the DNS provider and the
major CDN for the flattened CNAME, forcing the CDN to map
the query based on the IP address of customer.com’s authoritative
nameserver, which has no bearing on the client’s location), and
HTTP redirection is used to correct the mapping. The overall Web
access incurs 650ms penalty due to the lack of ECS on part of the
resolution path.

It would appear authoritative DNS servers that implement CNAME
flattening could mitigate this issue by using ECS and passing ECS
source prefixes to the CDN when they resolve the flattened name.
This would indeed help if customer.com’s authoritative nameserver
received queries directly from clients or from clients’ nearby ISP
resolvers. However, with public DNS resolvers, the queries can still
arrive from senders that are distant from the end-devices. Further-
more, even if the public DNS and the CDN mutually whitelist each
other to support ECS, the problem remains unless the Public DNS
also whitelists customer.com for ECS support. In summary, full
elimination of the performance penalty due to CNAME flattening
requires careful planning to enact pair-wise coordination of multi-
ple parties: customer.com’s authoritative DNS service provider, the
CDN used to accelerate customer.com’s content delivery, and any
public DNS resolution services.

9 LIMITATIONS & FUTUREWORK
In this section, we describe topics that we did not study yet would
complement our work nicely. This includes extensions of our anal-
ysis as well as entirely new research questions.

Our study of source prefix lengths in Section 6.2 uses the data
from our scan that probes each forwarder only once. Thus, the num-
ber of times egress resolvers are engaged is variable and depends

on how many open forwarders share a given resolver. Further, our
authoritative nameserver in the scan always answers ECS queries
with a deterministic scope (4 shorter than the source prefix length).
It would be interesting to engage the same resolver repeatedly in
a more systematic manner and explore if changing the scope in
authoritative nameserver’s responses would affect the source prefix
length of subsequent queries.

In Section 7, we study the impact ECS has on cache size for the
portion of DNS responses that carry the ECS option only. To un-
derstand the impact on overall cache size including DNS responses
that do not carry the ECS option, future work should focus on
the fraction of DNS responses that carry ECS options today and
attempt to predict what that fraction will be as ECS support grows.
From such a study, it would be possible to predict that overall cache
blow up factor for recursive resolvers at both present levels of ECS
deployment by authoritative nameservers and future increases in
deployment.

Another direction for future work is to conduct a compara-
tive analysis of different whitelisted recursive resolvers as well
as whitelisted vs. non-whitelisted resolvers in terms of their com-
pliance with RFC recommendations and consequences of ECS on
caching.

Our study of the ECS caching behavior of recursive resolvers in
Section 6.3 includes only recursive resolvers that are discoverable
through open forwarders in the Scan dataset and is not exhaustive
of all recursive resolvers. Other techniques for probing recursive
resolvers including Ripe Atlas [26] would complement our study,
increasing overall coverage.

In Section 8.1, we report a behavior of PowerDNS that has im-
plications on authoritative nameserver handling of ECS. Similar
nuanced behaviors may exist in other recursive resolver software.
A lab based analysis of ECS behavior in popular recursive resolver
software could detect the PowerDNS behavior and many other sim-
ilar behaviors, and would be beneficial to the developer community.

10 CONCLUSION
This paper studies the behavior of recursive resolvers that have
adopted EDNS0-Client-Subnet (ECS) extension to the DNS protocol.
ECS has been proposed to facilitate proximity-based server selec-
tion by content delivery networks (CDNs), especially in the face
of increasing use of public DNS resolvers that can be far removed
from the end-devices. Using diverse sources of data, we examine
important aspects of ECS-related behavior and find a wide range
of detrimental behaviors that negatively affect client privacy, ECS
benefits in improving server selection, and effectiveness of DNS
caching. This shows that despite its apparent simplicity, ECS adop-
tion requires careful engineering of a proper setup to get the most
benefits from ECS and avoid harm.
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A CLARIFICATIONS
Section 6.3.2. The 76 resolvers discussed in the first bullet of the
bullet list in Sec. 6.3.2 never submit ECS prefixes longer than 24
(thus obeying the privacy-preserving guidelines from the RFC), but
in addition (and we neglected to mention this explicitly) they sub-
mit exactly 24-bit prefixes, thus not running into a risk of getting
highly suboptimal responses as in the case of CDN-1 from Section
8.3. That’s why we termed their behavior “correct”. From the per-
spective of RFC compliance, sending shorter than 24 bits (as the 8
resolvers in the penultimate bullet do) is still perfectly allowed.
Section 7.1. The first sentence of the last paragraph,“In summary,
large TTL values and a diverse client population would result in
a large increase of the cache size recursive resolvers would need
if they were to preserve low rates of premature cache evictions
observed recently [27]”, is not rigorously substantiated by our ex-
periments. Since our analysis only involves a portion of DNS query
stream, the magnitude of the increase in the overall cache size is
unclear.
Section 7.2. Given our vantage point for the All-Names dataset,
which is between the anycast front-end and egress resolver, the
dataset only includes queries that missed in the front-end cache.
This in particular leads to the low “with-ECS” hit rate in Figure 3 –
these are just residual hits that passed through the front-end cache;
in fact, with the suitably large front-end cache, any hits we observe
would have been absorbed by the front-end and we would see 0 hit
rate. However, what this graph shows is that, without ECS, most
of the inherent misses would be converted into hits. E.g., for the
full client population, the “with-ECS” hit rate is 30%, leaving 70% of
queries to be inherent misses. Without ECS, the hit rate grows to
over 75%, or extra 45% beyond the residual hit-rate. Thus, without
ECS, 45% of 70% of the misses (or 64% of all misses) would have
turned into hits. We also emphasize again that this entire analysis
only concerns the ECS portion of the DNS traffic, and we make no
claims about the overall hit rate.
Section 8.3. We should note that while CDN-1 returned highly
suboptimal answers to queries with less than 24 bits of client subnet
information, the CDN-1 also returned /24 scope. An RFC-compliant
resolver would switch to 24-bit source prefix for subsequent queries
and stop suffering from suboptimal answers.
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