Characterization of Collaborative Resolution in
Recursive DNS Resolvers

Rami Al-Dalky! and Kyle Schomp?

! Case Western Reserve University
2 Akamai Technologies

Abstract. Recursive resolvers in the Domain Name System play a crit-
ical role in not only DNS’ primary function of mapping hostnames to
IP addresses but also in the load balancing and performance of many
Internet systems. Prior art has observed the existence of complex recur-
sive resolver structures where multiple recursive resolvers collaborate in
a “pool”. Yet, we know little about the structure and behavior of pools.
In this paper, we present a characterization and classification of resolver
pools. We observe that pools are frequently disperse in IP space, and
some are even disperse geographically. Many pools include dual-stack
resolvers and we identify methods for associating the IPv4 and IPv6
addresses. Further, the pools exhibit a wide range of behaviors from
uniformly balancing load among the resolvers within the pool to propor-
tional distributions per resolver.

Keywords: DNS; Resolver Pools; Dual-Stack

1 Introduction

The Domain Name System (DNS) [I5] is the component of the Internet that
maps human readable names to IP addresses. Traditionally, the DNS is consid-
ered to contain three components: (i) stub resolvers running on end-user devices
that receive resolution requests from apps and forward DNS queries to (i) re-
cursive resolvers that perform the resolution process by iteratively querying (4i%)
authoritative nameservers that are each responsible for zones (or domains) within
the DNS hierarchical namespace.

Because of the DNS’ vital role in Internet transactions, it is also a convenient
choice for implementing traffic management strategies, i.e., load balancing and
replica selection can be implemented by authoritative nameservers handing out
different hostname to IP address mappings as a function of recursive resolver
source IP address and time. Several major content delivery networks (CDNs)
[3/4I5] operate using DNS as the method to assign clients to edge servers. Be-
cause there is no direct communication between the end-user devices and the
authoritative nameservers in DNS, the location and network connectivity of the
end-user device must be inferred from that of the recursive resolver. There is a

mechanism for recursive resolvers to attach end-user information to DNS queries
[13], but the adoption of the mechanism is still low [I6JT9] so recursive resolvers
remain a frequently used surrogate for end-users. As such, understanding their
behavior is of critical importance.

Prior art [I8/I0] notes that the DNS ecosystem has grown more complex than
the early three component model: now recursive resolvers often act in “pools”
[10]. Indeed, prior art observe that multiple resolvers may participate in a single
resolution. The proliferation of public resolution services [6J7] are major use
cases for more complex resolver architectures, as the scaling requirements of
such systems are substantial.

The proliferation of recursive resolver pools has implications to the efficient
functioning of CDNs as pools further obfuscate the association of end-user device
to recursive resolver. Unfortunately, little is known about the structure and
behavior of pools. In this work, we present what is to the best of our knowledge
the first attempt to characterize recursive DNS resolver pools as observed by
authoritative nameservers. Our key contributions are:

— Determine the frequency of pooling behavior and the size of exist-
ing pools. We find use of pools is common, with 71.4% of DNS queries in
our dataset originating from pools. Further, pool sizes vary widely with some
operators using pools of 2 resolvers and others using pools of hundredsﬂ

— Identify key characteristics of pools including IP, AS, and geo-
graphic diversity. Pools often cover large portions of IP-space with 40% of
IPv4 pools distributed within a /16 CIDR block or larger. At the same time,
however, pools rarely cross network operator boundaries. We also observe
that 10% of pools have large distances between the resolvers in the pool, po-
tentially confusing or misleading efforts to geolocate end-user devices behind
the pool.

— Tangentially, discover dual-stacked resolvers and novel ways to as-
sociate IPv4 to IPv6 addresses. We find many pools of 2 IP addresses
are actually dual-stack resolvers and observe that patterns in IPv4/IPv6
address assignment can aid in identifying dual-stack configurations.

— Classify pools according to several observed behaviors. We find that
pools utilize a wide range of behaviors to distribute DNS queries within
the pool. We identify several behaviors including uniform load balancing,
off-loading, and various other uneven distributions.

The rest of this paper is organized as follows. In section [2] we provide a
brief summary of related work. In section [3] we describe our methodology and
present the experimental apparatus, dataset, and post-processing steps. Section[]
contains a characterization of pools by network properties. Section [p| classifies
the pools by behavior and we draw our conclusions in section [6]

3 We identify resolvers by IP address and there may not be a one-to-one relationship
between hardware and IP address. Regardless, our study reflects what authoritative
nameservers observe.

2 Related Work

To the best of our knowledge, we contribute the first assessment of the charac-
teristics of recursive resolver pools. However, several works [L0/I8] have observed
the presence of resolver pools through active probing with CNAME redirections.
Alzoubi et al. [TI0] called the collaborative pools behavior a multiport behavior
and interpreted it as either a single multiport machine or load balancing across
a resolver farm. Moreover, Schomp et al. [I8] looked at the resolver pools from
the resolver client perspective by studying the number of recursive resolvers used
per client and the geographical distance between clients and recursive resolvers.

While examining DNS pools, we find many dual-stack recursive resolvers.
Berger et al. [I1] associate IPv4 and IPv6 addresses in DNS queries to find
dual-stack machines. In the presence of pools, the authors associate sets of IPv4
and IPv6 addresses rather than identify individual dual-stack resolvers. Other
research [12[17] focuses on identifying IPv4 and IPv6 dual-stack machines using
TCP options and timestamps, but both methods have limitations when applied
to DNS recursive resolvers. First, many resolvers are not open to answer queries
from arbitrary sources on the Internet meaning active scanning techniques will
miss many recursive resolvers. Second, the techniques require TCP which is a
backup transport protocol for DNS and not all TCP implementations support
TCP timestamp option. Our technique for discovering pools and dual-stack re-
solvers does not require any special support from the target resolvers.

3 Dataset & Methodology

We discover pools of recursive resolvers by first discovering pairs of collaborating
resolvers and then grouping the pairs together. To find pairs of collaborating
resolvers, we use DNS queries for instrumented hostnames. Resolving one of
the hostnames induces a resolver to send two DNS queries to our authoritative
nameservers, as described below. If the resolver is part of a pool, the DNS queries
may arrive at the authoritative nameservers from different source IP addresses,
offering an opportunity to capture a pair of collaborating recursive resolvers.
Below, we describe our dataset, how we extract pairs from the dataset, and then
how to form pools from the pairs.

Our dataset consists of DNS query logs from the authoritative nameservers
of a major CDN. For a small fraction of Web requests, the CDN platform in-
jects a javascript library [2] that initiates a DNS resolution for an instrumented
hostname under the CDN’s control. The hostname encodes the end-user device’s
public IP subnet, and resolves to a CNAME record—a DNS record that indicates
a hostname is an alias of another hostname—for a second hostname (also under
the CDN’s control) that also encodes the end-user’s public IP subnet. Thus, the
resolution looks like:

nl.encoded(z.x.x.x/y).example.com — n2.encoded(x.x.x.x/y).example.com

The DNS queries for both hostnames are recorded in the logs including the source
IP address and a timestamp of when the query was received truncated to the

second. We collect 1 week of logs, July 12-19 2017, containing 820M queries from
429K unique recursive resolver IP addresses. Table [I] follows the breakdown of
our dataset in the remainder of this section. Using the EdgeScape [I] geolocation
database, we find the recursive resolvers span 27294 ASNs and 234 countrie
Table [2] lists the top 10 countries by number of observed resolvers. The top 10
ASNs by number of observed resolvers account for 82.6K (19%) of the total.

Description Number Rank | Country | Resolvers
DNS Queries 820M 1 UsS 153K
Unique Resolvers 429K 2 DE 27K
Resolver Pairs 109M 3 BR 24K
Unique Pairs 1.16M 4 GB 16K
Singletons 398K 5 RU 16K
Non-singletons 762K 6 CA 15.6K
Groups of Resolver Pairs 421K 7 JP 14K
Singletons 360K 8 AU 10.8K
Initiator Pools 61.5K 9 IN 10K
10 T 8.7K

Table 1. Description of the dataset. Table 2. Top 10 countries with largest
number of observed resolvers

Next, we group the queries that are part of the same resolution into pairs
(Q1, Q2) to extract pairs of collaborating resolvers. Queries that are part of the
same resolution are identified by the tuple: encoded end-user subnet, query type
(A for IPv4 address or AAAA for IPv6 address) and timestamp. This, however,
may not be a unique key because (i) multiple end-users in the same subnet may
resolve the same hostname at roughly the same time, (i¢) multiple recursive
resolvers may “race” to return an answer fastest to the same end-user, or (iii)
recursive resolvers may re-resolve the hostname, possibly due to prefetching. The
third category can be particularly troublesome due to DNS TTL violations [I§]
where recursive resolvers may re-resolve only one of the two hostnames in the
series, even though both hostnames have the same authoritative DNS TTL. To
eliminate noise from these sources, we employ a sliding window of 11 seconds:
[i — 5,74 5]. If in second ¢, there is a matching pair of queries, @ and Q2, we
check in the window [i — 5,] for any other queries like Q. Similarly, we check
the window [i,4 + 5] for any other queries like Qq. If we find either, then the
pair is discarded because we cannot identify which queries should be paired. The
window of 11 seconds was chosen to allow for up to a 5 second resolver timeout
and retry, which is the default DNS timeout value in Linux [14].

The source IP addresses of each pair of queries (@Q1,Q2) produce an ordered
pair of related recursive resolver IP addresses (R1, R2). In total, we find 109M
sample ordered pairs consisting of 1.16M unique pairs (Ri, Ry), 66% of which
were sampled more than once. We exclude 7.3K samples from 5.6K unique pairs

4 We report the results from EdgeScape, but note that the ASNs matched exactly
with what is reported by Team Cymru [8] and countries disagreed for only 166 IP
addresses.

where one of the resolver IP addresses belongs to the ASNs of Google Public
DNS [6] or OpenDNS [7] and the other does not. All but 853 of the unique
pairs are cases of an ISP’s resolvers off-loading queries to Google or OpenDNS.
We exclude these pairs as they contaminate our pool size measurements (see
Section . The remaining 853 pairs exhibit Google Public DNS or OpenDNS
off-loading queries to a third party. We suspect that these may be error in-
troduced by query pairs outside our 11 second window. The pairs account for
less than 0.1% of all our samples, so we exclude them as well. Of the unique
pairs, 762K are non-singletons—R; # Rs—which we use as the basic unit for
constructing pools. Note that singleton pairs may still be part of a pool since
resolvers may collaborate in only a portion of resolutions.

Next, we merge samples together to form pools. Care must be taken in con-
structing the pools, because the relationships may not be symmetric. Consider
the case of three recursive resolvers: x, y, and z. With observed pairs (z,y) and
(z,2), we cannot conclude a direct relationship between y and z. Similarly, if we
also observe pair (y,z), we still cannot conclude that all three are members of the
same pool, as z may have no affiliation with x and y. Therefore, we opt to take a
conservative approach and preserve directional relationships. We group all sam-
ples with the same initiator R;. Continuing the above example, we generate the
grouping (x:y,z) where the resolver on the left-hand side uses all of the resolvers
on the right-hand side. From our dataset, we find 421K groups of which 360K
represent singletons, i.e., resolvers that did not ever use another resolver R, in
our dataset. Excluding those, we are left with 61.5K groups that generated 780K
(71.6%) of unique pairs and 77.9M (71.4%) of the total samples in our dataset.
From here on, we exclude singletons from our analysis and refer to the remaining
61.5K groups as “initiator pools”, or just pools where contextually clear.

4 Characterizing Resolver Pools By Network Properties

In this section, we breakdown the initiator pools by network properties. We
attempt to find common network structure and characterize the pools by those
structures.

4.1 Initiator Pool Size

Here, we explore the size of the discovered pools based on the number of recursive
resolver IP addresses in the pool. The number of samples per pool is defined as
the summation of the number of samples per unique pair in the pool. Many pools
(17.5%) are only sampled once. As a result, our ability to discover the actual size
of the pool is limited due to low sampling and our pool size results are a lower
bound. However, since our dataset is driven by end-user action, the number of
samples per pool correlates with the number of end-users behind the pool. Thus,
a more frequently used pool is likely higher sampled and our measurement of
size more accurate.

Figure [I] shows the number of recursive resolver IP addresses per pool. As
shown in the figure, most pools are small with 38.7K (63%) of pools contain 2
resolvers. We observe that 21.5K (35%) pools with 2 resolvers contain one IPv4
and one IPv6 address and we explore them in more detail in section The
largest pool we discovered consists of 317 IP addresses contained within 5 IPv4
/24 CIDR blocks and 8 IPv6 /64 CIDR blocks. All blocks belong to ASN 15169,
Google Inc. In all, 85% of the pools consist of less than 10 resolvers.

X /, L
0.9 0.9)
/ f_-
0.8 Fr,.r""‘ 0.8 i
PR PRTVONS PP Tt
0.7 . 0.7 : =
0.6 0.6| . - ;]
505 505 E : :]
0.4 0.4 : :
/; : — cover v4
K :
03 03 o AN === wavg v4
0.2 0.2 & T E cover v6
o :
0.1 0.1 = wavg v6
00 10 10 0016 32 48 64 80 96 112 128
of resolver IPs prefix length

Fig. 1. Size of the initiator pools in Fig. 2. Prefix length of the most specific
number of resolver IP addresses CIDR block covering all IP addresses in
the initiator pool

In comparison with previous work, Alzoubi et al. [I0] observed that 90% of
the discovered pools have at most 3 resolvers while a single pool consists of over
22K resolvers. We attempt to replicate their findings using their methodology
for constructing pools with our dataset, but do not find a single "megapool”.
The largest pool we discover is caused by offloading by many third parties to
Google and OpenDNS (section , and we therefore suspect that the difference
between our dataset and the dataset of Alzoubi et al. is reduced observations of
offloading to Google and OpenDNS.

4.2 IP-Space Distribution

Next, we investigate how concentrated initiator pools are in IP-space. Intuitively,
we expect collaborating resolvers to be closely concentrated, e.g., Google Public
DNS publishes a list of whole /24 CIDR blocks that are used in recursive reso-
lution [6]. In this section, we measure how similar the IP addresses of resolvers
within a pool are to one another.

First, we calculate the length of the prefix for the most specific CIDR, block
that covers all IP addresses in the pool. Consider a pool with two IP addresses:
1.2.3.0 and 1.2.3.128. The longest common prefix of the two IP addresses is 24-
bits, thus, the covering prefix length is 24-bits. For IPv4, the prefix length varies
from 32-bits (indicating a single IP address in the pool) to 0-bits (indicating

that even the leading bit does not match). The values have a similar meaning
for IPv6, but extend to a maximum value of 128-bits due to the larger address
size. For this analysis, we discard unique pairs where the IP versions do not
match and don’t plot pools without any unique pairs remaining. The filtering
leaves 39.3K initiator pools, 37.7K are IPv4 and 1.6K are IPv6 pools.

The covering prefix lengths for IPv4 and IPv6 are shown in Figure [2]in lines
“cover v4” and “cover v6”, respectively. In IPv4, we find that 48% of pools are
covered by a prefix shorter than 24-bits and further 38% are covered by a prefix
shorter than 8-bits. This indicates that a large fraction of initiator pools are
greatly distributed in IP-space. There is also a large amount of variability in the
prefix length as demonstrated by the relatively smooth curve. In IPv6 on the
other hand, there are 4 clear typical prefix lengths: 44, 60, 70, and 120-bits. The
pools with prefix lengths of 44 and 60-bits are operated by Google, while the
pools with prefix lengths of 70-bits are operated by AT&T. The prefix lengths
greater than 120-bits come from a variety of operators. This result highlights
the differing policies network operators apply when assigning IP addresses.

The covering prefix length is susceptible to outliers, however. For example,
in a pool of 10 resolvers where 9 match to 24-bits but 1 resolver only matches
to 8-bits, the covering prefix length is still 8-bits. Therefore, we next compute
the weighted average prefix length between the initiator and each of the other
resolvers in the pool using the relative number of samples per unique pair as
the weights. The result of this computation is plotted in lines “wavg v4” and
“wavg v6” and show a frequently more specific prefix length than the covering
prefix length. This indicates that (i) resolver usage within a pool is frequently
not uniform (see Section , and (i7) resolvers closer in IP-space are used
more frequently than resolvers further apart. This could be a preference choice,
e.g., resolver operators prefer to off-load to nearby capacity, but will off-load to
equipment further away if necessary (see Section .

4.3 Autonomous System Distribution

The previous section noted that initiator pools can be dispersed in IP-space. In
this section, we endeavor to determine if the pools encompass multiple operators.
First, we look at the number of autonomous systems (ASs) per initiator pool and
observe that 15.2% of pools are in more than one AS and 0.7% are in more than
two ASs. In the most extreme case, one initiator pool consists of 10 recursive
resolvers each in a different AS. All of the ASs are Russian and each uniquely
identifies a distinct Russian city.

We focus on the 8.9K (14.5%) pools in 2 ASs here and manually compare the
WHUOIS entries of the most commonly occurring AS pairs. The most frequently
occurring pair of ASs is 7018 and 7132 which occur together in 553 pools, and
both are operated by AT&T. The second most frequently occurring pair of ASs
are operated by Sprint Corporation: 10507 and 3651 occur together in 201 pools.
Noting the exception of Google and OpenDNS usage by third parties which we
filter (see Section , we conclude that other collaboration between recursive
resolvers from unrelated ASs is rare.

4.4 Geographic Distance within Pools

In this section, we investigate the geographic distribution of recursive resolvers
within a pool. Large distances between recursive resolvers can have ramifica-
tions for any system attempting to geolocate end-users by the recursive resolver
that they use, e.g., CDNs that attempt to map end-users to nearby replicas for
performance reasons. We attempt to determine whether recursive resolvers in
an initiator pool are all in the same location, and, if not, how far the recursive
resolvers are from the initiator. We calculate the Great Circle distance between
the initiator and the resolvers in the pool using the geolocation information pro-
vided by EdgeScape [I]. We consider three methods for calculating the distance
within a pool:

1. Minimum distance between the initiator and any resolver in the pool (the
lower bound).

2. Maximum distance between the initiator and any resolvers in the pool (the
upper bound).

3. Weighted average distance between the initiator and the resolvers in the pool
using the number of samples per unique pair as the weights.

Figure 3| provides the distributions of those distances. We notice that 6.2K (10%)
of the pools have a weighted average distance more than 160 km (100 miles) and
those pools represent 3.6M (3.3%) of our total samples. This means that the
majority of pools—producing 96.4% of the samples in our dataset—consist of
resolvers that are close to each other geographically. We examine the pools in
the tail with weighted average distance more than 160 km and observe 319 pools
where all IP addresses are within 66.102.0.0/20 and geolocate across the UEﬂ
The IP addresses reverse resolve to google-prozy-${IP}.google.com, indicating
that they are Google proxies [9]. This suggest that Google proxies (i) perform
recursive resolution themselves rather than rely upon Google’s DNS infrastruc-
ture, and (i%) collaborate amongst themselves.

The geographically distributed pools add extra time to the resolution process
as off-loading a follow-up query necessitates further network delay. Moreover,
distance within the pool complicates end-user mapping in CDNs as discussed
before. We observe that pool intra-distance is small for the majority of pools, a
positive result for CDNs.

5 Classifying Resolver Pools By Behavior

In this section, we provide a classification of the pools by how DNS queries are
distributed among the resolvers within the pool. Unfortunately, low sampling
makes identifying behavior in many pools difficult. Consequently, we limit this
section to the study of highly sampled pools, reducing our dataset to the 18.7K
(30%) pools with at least 100 samples. The threshold was chosen because the

5 We manually verified that our example cases are approximately located where
EdgeScape reports by using ping measurements from nearby landmark locations.

1.0 1.

L emuess aans 0.9
0.950 germnent T 0.8
...... 0.7
0.90} - #* BN BRI 0.6
I st .
5 | 805
v o
0.85 o 0.4
g min 03 /
0.80f- wavg 0.2 /
et
..... max 0.1
0.75 0.8
0 200 400 600 800 1000 1200 1400 1600 0 0.2 0.4 0.6 0.8 1.0
distance (km) fraction of initiator queries
Fig. 3. Tail of the distribution of Fig. 4. The number of samples in an ini-
distances within pools tiator pool that are initiator to initiator

distribution of samples per pool surrounding the threshold is smooth. We classify
the pools into 4 categories described below: (i) dual-stack resolvers, (i) uniform
load balancing, (iii) off-loading and (iv) others. Table [3| contains a breakdown
of the categories.

5.1 Dual-Stack Resolvers

We observe that 6.8K (36%) of the pools contain exactly 2 recursive resolver IP
addresses where one address is IPv4 and the other is IPv6, and hypothesize that
these are actually dual-stack recursive resolvers that switch between interfaces
during resolution. To test this theory, we attempt to match the IPv4 and IPv6
addresses by patterns in the IP assignments: (i) the IPv4 octets embedded as the
final 4 hextets (e.g., 1.2.3.4 and 89ab::1:2:3:4), or (ii) the final IPv4 octet equal
to the final IPv6 hextet (e.g., 1.2.3.4 and 89ab::4). Of the 6.8K potential dual-
stack resolvers, 696 match (7) and another 1.3K match (7). Interestingly, We also
observe 4 cases where the full IPv4 address is embedded within the IPv6 address,
but not in the final 4 hextets (e.g., 1.2.3.4 and 89ab::1:2:3:4:5678). From man-
ual inspection of the remaining 4.8K potential dual-stack resolvers, we observe
incremental IP assignment patterns among the pools within the same AS that
also aid in positively identifying dual-stack resolvers. For example, in AS 46690,
Southern New England Telephone Company, IP assignment appears incremen-
tal in both IPv4 and IPv6, but shifted: w.z.y.z forms a pool with a:b:c::${z+C}
where C is a constant. Anecdotally, we observe similar patterns in several ASs.

Next, we note that the IPv4 interface is heavily favored for transport in the
pools that are potentially dual-stack resolvers. For each pool, we calculate the
ratio of DNS queries using the IPv4 interface versus the IPv6 interface, and find
the median ratio is 11:1. Only 718 (10.6%) of the pools favor the IPv6 interface
over the IPv4 interface. Our findings here may be impacted by our measure-
ment apparatus, as the DNS zone we use to collect the dataset has more IPv4
delegation records than IPv6 records: 11 and 2, respectively. Depending upon
recursive resolver policy, the imbalance may cause resolvers to prefer reaching

Description Number of Pools |Percentage of Pools
Total Discovered Pools 61.5K -
with >100 samples 18.7K 30%
Dual-Stack Resolvers 6.8K 36%
Uniform Load-Balance Pools 2.5K 14%
Off-Loading Pools (rare) 4.9K 26%
Off-Loading Pools (frequent) 300 <1%
Other 4.3K 23%

Table 3. Breakdown of pools by classification

our authoritative servers over IPv4 (e.g., if the resolver selects a delegation via
round robin), thus impacting the number of samples per network protocol.

Finally, we find that in 506 (7.4%) of the pools, the IPv4 and IPv6 addresses
are in different ASs operated by the same company. For instance, we find pools
belonging to Frontier Communications that exhibit an incremental IP assign-
ment pattern where the IPv6 address is in AS 5650 and the IPv4 addresses is in
AS 3593. Thus, having IPv4 and IPv6 addresses in different ASs does not infer
that they do not both belong to a dual-stack machine. As future work, we plan
to apply the patterns above to identifying dual-stack resolvers within pools of
more than 2 resolver IP addresses.

5.2 Load Balancing, Off-loading and Other Pools

Turning to the 11.9K pools that are not dual-stack resolvers, we classify them
into three categories based on the scheme used by the initiator to distribute
queries among the resolvers in its pool. Recall that each unique pair has an
associated number of samples. Therefore, we can compute the fraction of ob-
servations for each resolver within the pool. First, we check for uniform load
across the resolvers using the chi-squared test (x?) for uniformity. Using a stan-
dard 5% significance level, we reject the null hypothesis—that the distribution
is uniform—if the p-value is less than 0.05. Otherwise, we conclude the pool
is a uniform load balancing pool. Approximately 2.5K (14%) of the pools are
balancing the load evenly among the resolvers within the pool.

Next, we explore the 9.5K pools where the null hypothesis is rejected. We
observe that in many pools the initiator uses itself much more frequently than
other resolvers in the pool. We compare the number of samples in the pool that
are initiator to initiator, (x, z), with the number of samples for any other unique
pair in the pool, (z,y). The line in Figure |4 shows the ratio initiator to initiator
samples over the maximum samples of any other unique pair. An x-axis value of
0.5 indicates that the initiator uses itself at least as often as any other resolver
in the pool. There is a clear behavioral shift at greater than 0.5. We choose
the threshold x = 0.8 to separate the pools into classes. The 4.9K (26%) pools
where x > 0.8 we term off-loading, as the initiator prefers to use itself, but will
off-load queries to other resolvers less frequently. The frequency of off-loading
differs widely across pools. In the extreme, we observe 2 recursive resolvers in AS
1221—Telstra Corporation—that use each other in only 8 out of 340K samples.

We postulate that resolvers like Telstra’s are using a failover behavior when a
DNS query is unsuccessful, possibly due to packet loss. Unfortunately, we are
not able to identify the reason why queries are off-loaded from our dataset, but
note that it is not a function of domain name, as all queries in our dataset are
for a single domain.

At the far left of Figure[d] there is another behavioral shift where the initiator
never uses itself in 300 (<1%) of pools. In 219 of the pools, the initiator is an
IPv6 resolver, and we therefore conclude that IPv4 transport preference is a
main cause of the behavior.

The remaining 4.3K (23%) pools that lie in the middle, we classify as other
because they exhibit a variety of behaviors. One behavior is a load distribution
which is uneven, e.g., AS 20057—AT&T Mobility—uses a peer structure of IPv4
resolvers where each initiator has a peer and distributes queries roughly 52%
to 48% to itself and the peer, respectively. We note our p-values for the AS
20057 pools is roughly 0.002, well below the significance level. In a slightly more
dramatic example, AS 4780—Digital United—uses a distribution of 58% to 42%
between their resolver peers. Larger pools of greater than 2 resolvers also use
complex policies where the fraction of use varies per resolver in the pool, e.g.
in a pool of 3 resolvers, they are each used in 50%, 30%, and 20% of samples.
Another behavior is a combination of off-loading with uniform load balancing.
We observe multiple pools in Level3’s AS where all resolvers within the same
/24 CIDR block are uniformly load balanced, and resolvers within a second /24
CIDR block are used roughly once out of 500 samples. The range of behaviors
within the other classification comes near to the range of operators, thus we do
not attempt to further refine this classification.

6 Conclusion

This paper examines the characteristics of recursive resolver pools. We find the
resolver pools are not trivial and a large fraction of DNS queries originate from
pools of resolvers. First, we examine the characteristics of the pools based on
general network properties. We find that the pools are varied in size and con-
fined within an operator’s network. Further, we find that a large portion of pools
are distributed in IP space and 10% of the discovered pools are geographically
distributed. Next, we classify the resolver pools based on their operational be-
havior. We identify dual-stack resolvers by looking into pools of 2 resolvers which
have both IPv4 and IPv6 addresses and find that 36% of the pools are dual-stack
resolvers. We observe that there are different assignment patterns—varying from
operator to operator—that can be used to associate IPv4 and IPv6 addresses.
Further, we classify the pools into 3 major categories based on the distribution
of DNS queries among the resolvers within the pool. We find that 14% of the
pools uniformly distribute the load among the resolvers within the pools. More-
over, in 26% of the pools, we observe that the initiator resolver prefers to handle
the resolution by itself but in some cases it decides to off-load queries to other

resolvers in its pool. Finally, 23% of the pools tend to have a wide range of
behaviors which varies depending on the operator.

References

1.

O ot w

~

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Akamai EdgeScape (2017), https://www.akamai.com/us/en/products/web-
performance/

Akamai Real User Monitoring (2017), https://www.akamai.com/us/en/
resources/real-user-monitoring. jsp

Akamai Technologies, Inc. (2017), https://www.akamai.com/

Cloudflare, Inc. (2017), https://www.cloudflare.com/

Fastly, Inc. (2017), https://www.fastly.com/

Google Public DNS (2017), https://developers.google.com/speed/public-
dns/

OpenDNS (2017), https://www.opendns. com/

Team Cymru IP To ASN Mapping (2017), http://www.team-cymru.org/IP-ASN-
mapping.html

Agababov, V., Buettner, M., Chudnovsky, V., Cogan, M., Greenstein, B., Mc-
Daniel, S., Piatek, M., Scott, C., Welsh, M., Yin, B.: Flywheel: Google’s data
compression proxy for the mobile web. In: NSDI. vol. 15, pp. 367-380 (2015)
Alzoubi, H.A., Rabinovich, M., Spatscheck, O.: The anatomy of LDNS clusters:
findings and implications for web content delivery. In: Proceedings of the 22nd
International Conference on World Wide Web. pp. 83-94. ACM (2013)

Berger, A., Weaver, N., Beverly, R., Campbell, L.: Internet Nameserver IPv4 and
IPv6 Address Relationships. In: Proceedings of the 2013 Conference on Internet
Measurement Conference. pp. 91-104. IMC ’13, ACM, New York, NY, USA (2013)
Beverly, R., Berger, A.: Server siblings: Identifying shared IPv4/IPv6 infrastruc-
ture via active fingerprinting. In: International Conference on Passive and Active
Network Measurement. pp. 149-161. Springer (2015)

Contavalli, C., van der Gaast, W., Lawrence, D., Kumari, W.: Client Subnet in
DNS Queries. RFC 7871, RFC Editor (May 2016), https://tools.ietf.org/
html/rfc7871

Cui, H., Biersack, E.: Trouble shooting interactive web sessions in a home environ-
ment. In: Proceedings of the 2nd ACM SIGCOMM workshop on Home networks.
pp. 25-30. ACM (2011)

Mockapetris, P.: Domain names - implementation and specification. STD 13, RFC
Editor (November 1987), http://www.rfc-editor.org/rfc/rfc1035.txt

Otto, J.S., Sdnchez, M.A., Rula, J.P., Bustamante, F.E.: Content delivery and the
natural evolution of DNS: remote DNS trends, performance issues and alternative
solutions. In: Proceedings of the 2012 ACM Conference on Internet measurement
conference. pp. 523-536. ACM (2012)

Scheitle, Q., Gasser, O., Rouhi, M., Carle, G.: Large-scale classification of IPv6-
IPv4 siblings with variable clock skew. In: Network Traffic Measurement and Anal-
ysis Conference (TMA), 2017. pp. 1-9. IEEE (2017)

Schomp, K., Callahan, T., Rabinovich, M., Allman, M.: On Measuring the Client-
side DNS Infrastructure. In: Proceedings of the 2013 Conference on Internet Mea-
surement Conference. pp. 77-90. IMC ’13, ACM, New York, NY, USA (2013)
Sudrajat, F.U.: The State of Adoption of DNS ECS Extension on the Internet.
Master’s thesis, Case Western Reserve University (2017)

https://www.akamai.com/us/en/products/web-performance/
https://www.akamai.com/us/en/products/web-performance/
https://www.akamai.com/us/en/resources/real-user-monitoring.jsp
https://www.akamai.com/us/en/resources/real-user-monitoring.jsp
https://www.akamai.com/
https://www.cloudflare.com/
https://www.fastly.com/
https://developers.google.com/speed/public-dns/
https://developers.google.com/speed/public-dns/
https://www.opendns.com/
http://www.team-cymru.org/IP-ASN-mapping.html
http://www.team-cymru.org/IP-ASN-mapping.html
https://tools.ietf.org/html/rfc7871
https://tools.ietf.org/html/rfc7871
http://www.rfc-editor.org/rfc/rfc1035.txt

	Characterization of Collaborative Resolution in Recursive DNS Resolvers

