
DNS Resolvers Considered Harmful∗

Kyle Schomp†, Mark Allman‡, and Michael Rabinovich†

†Case Western Reserve University, Cleveland, Ohio, USA
‡International Computer Science Institute, Berkeley, California, USA

kyle.schomp@case.edu, mallman@icir.org, michael.rabinovich@case.edu

Abstract— The Domain Name System (DNS) is a critical

component of the Internet infrastructure that has many secu-

rity vulnerabilities. In particular, shared DNS resolvers are a

notorious security weak spot in the system. We propose an

unorthodox approach for tackling vulnerabilities in shared

DNS resolvers: removing shared DNS resolvers entirely and

leaving recursive resolution to the clients. We show that the

two primary costs of this approach—loss of performance

and an increase in system load—are modest and therefore

conclude that this approach is beneficial for strengthening

the DNS by reducing the attack surface.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network com-

munications

General Terms

Design; Security

1. INTRODUCTION

The Domain Name System (DNS) is a key component

of the Internet infrastructure. It provides mapping between

human-readable names of Internet hosts and their network-

interpreted numerical IP addresses. Client devices generally

leverage DNS resolvers to discover IP addresses. These re-

solvers in turn obtain the mappings from authoritative DNS

servers, which maintain these mappings.1 DNS resolvers

abstract the multi-step iterative DNS resolution procedure

∗This work was partially supported by NSF grants CNS-1237265,
CNS-0831535, and CNS-0831821.
1The DNS ecosystem consists of many different components that
play a part in the name resolution process. In this paper we consider
all resolution components that lie between clients and authoritative
name servers as “resolvers” no matter their specific function.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
Hotnets-XIII, October 27–28, 2014, Los Angeles, CA, USA.

Copyright 2014 ACM 978-1-4503-3256-9/14/10 ...$15.00
http://dx.doi.org/10.1145/2670518.2673881

from clients and provide a shared cache across clients—thus

offering the possibility of better performance to clients and

scalability to DNS itself. While DNS resolvers follow the

classic architectural approach of modularity, we question

whether this factorization is still useful in the modern In-

ternet, or whether we should eliminate resolvers and instead

have clients perform their own recursive resolutions. Elimi-

nating DNS resolvers promises a number of benefits.

First, removing resolvers simplifies the overall system.

Modern DNS resolvers constitute a complex infrastructure

with many distinct components [23], making the system dif-

ficult to manage and troubleshoot. Pushing the functionality

to clients makes the clients themselves more complex, but in

a way that is easier to manage and more transparent than our

current nebulous situation where a resolution fails because

of “something out there”.

Second, DNS resolvers are vulnerable to multiple forms

of attack [14, 17, 24] such as fraudulent record injection,

which expose end users to critical security threats. Further,

attackers can launder requests through the upwards of 30M

open resolvers [2,23] that will answer arbitrary queries from

arbitrary clients. These open resolvers can be used by an at-

tacker to hide their tracks (e.g., as part of a wider DoS cam-

paign) or circumvent firewalls to expose closed portions of

the resolution ecosystem—i.e., that only answer queries for

“internal” hosts—to indirect attacks. By removing DNS re-

solvers, we (i) eliminate the threat of resolver cache poison-

ing attacks on clients conducting their own resolutions and

(ii) we reduce the overall attack surface of the DNS ecosys-

tem as shared resolvers gradually disappear.

Third, shared DNS resolvers handicap the operation

of replicated services, notably content delivery networks

(CDNs)—which carry 39–55% of Internet traffic [12]. Since

a DNS request generally precedes content requests, CDNs

often use the origin of the DNS request as a hint about the

location of the client. However, previous work shows that

clients and their DNS resolvers may in fact be far apart and

therefore the replica chosen based on the DNS resolver’s

IP address will offer suboptimal performance [4, 16]. Our

proposal of simply removing shared DNS resolvers directly

tackles this issue—without additional mechanisms such as

[9]—by exposing the client’s IP address to the authoritative

DNS servers that direct clients to specific replicas.

In addition, we note that clients may independently

choose to resolve hostnames themselves without changes

anywhere else in the system—there are no barriers to transi-

tion to our approach. While this does not eliminate the secu-

rity issues surrounding shared resolvers, it makes them moot

for clients that have chosen to conduct their own lookups.

In the remainder of this paper we empirically establish

that in terms of performance and scalability the benefits of

shared DNS resolvers are at best modest. Through trace-

driven simulation, we show that direct client resolution pro-

vides similar performance to the end user when compared

to using a shared resolver. Further, we show that the over-

all load increase on the rest of the system is modest. While

these are not the only two issues to tackle when considering

the removal of DNS resolvers—we briefly sketch others in

§ 6—we believe these are the two largest initial questions to

consider. We believe our initial investigation shows eliding

DNS resolvers to be a promising approach for strengthening

the overall name resolution process.

2. RELATED WORK

Many previous studies discuss specific DNS security vul-

nerabilities (e.g., [7, 10, 24, 25]) and offer point solutions

(e.g., [5, 8, 27, 29]). We do not address any specific issue,

but rather observe that many problems arise in shared re-

solvers and therefore we simply eliminate the target, which

mitigates both known and unknown vulnerabilities. Unlike

previous work to mitigate resolver vulnerabilities through

modifications to the DNS ecosystem—which naturally adds

complexity—our approach requires no changes to the proto-

col and results in an overall less complex ecosystem.

DNSSEC [6] is a general approach that strives to tackle

security issues not by point solutions that aim to fix parts of

the infrastructure, but by cryptographically securing the in-

formation in DNS transactions. Currently DNSSEC deploy-

ment is low—with only roughly 1% of resolvers validating

DNSSEC records [11, 13] despite DNSSEC approaching its

10
th anniversary. Our approach is orthogonal to DNSSEC.

In addition to security concerns, shared resolvers pose

challenges to CDNs as we discuss in § 1. In particular, CDNs

frequently assume DNS resolvers and clients are close,

which turns out to be wrong in some cases [4, 18, 21, 26].

Several proposals develop ways to convey clients’ network

location to CDNs within DNS requests [9, 15, 19]. Our

proposal simply provides this information to CDNs as the

source address of the DNS request.

3. DATASETS ANDMETHODOLOGY

We leverage three datasets in our study. Our first dataset is

a 4 month long set of traffic logs from the Case Connection

Zone [1]—a fiber-to-the-home network connecting roughly

100 residences to the Internet with 1 Gbps fiber. Our logs

are collected using Bro [3]. For each DNS transaction, we

record the request and response and corresponding times-

tamps. For each TCP connection, we record a summary

that includes the initiation time, duration, IP addresses, port

numbers, bytes transferred and some ancillary information.

We collect data between April 1 and July 31, 2012 from

a vantage point between the houses and ISP’s network—

which also places the monitor between the houses and the

ISP’s two shared DNS resolvers—as illustrated in Figure 1.

This vantage point has two implications: (i) we cannot ob-

serve which device within a house is responsible for spe-

cific traffic as the residences are NAT’ed and previous work

shows multiple devices per house exist in our network [22],

and (ii) we cannot observe the traffic between the ISP’s

shared resolvers and the authoritative DNS servers (ADNS).

The delay between our vantage point and both the users’ end

hosts and the shared resolvers is typically less than 1 msec.

Our passive monitor records 58.8M DNS resolutions. Of

these, we find 41M—475K unique domain names—to have

valid DNS requests and responses in the trace. We ex-

clude 17.8M transactions for one of three basic reasons:

(i) Bro glitches that cause bad timestamping2 (180K), (ii)

no response to DNS queries (8M), (iii) requests with no

valid question (90K) and (iv) transactions with responses

that have no resource records nor any indication of an error

(9.5M). We additionally link DNS transactions with subse-

quent TCP connections3: we link a connectionwith the near-

est preceding DNS query from the same IP address whose

response includes the remote IP address used in the TCP

connection. We find TCP traffic that leverages 20.4M (or

50%) of the DNS resolutions. Our dataset includes 242M

TCP connections and we use the filtering techniques de-

scribed in [22] to remove the invalid connections such as

those never completing the handshake. Of the remaining

108M valid TCP connections, we find that 39% do not use

a remote IP address found in a previous DNS response (e.g.,

BitTorrent connections). This leaves 66.3M (61%) TCP con-

nections that leverage the DNS.

As a baseline, Figure 2 shows the distribution of lookup

duration found in our logs on the “DNS resolution time”

line. The step at less than 1 msec represents names in the

shared resolver cache, while the step at 10 msec is due to

responses from nearby ADNS servers. Significantly, we find

that hosts do not always create TCP connections immedi-

ately after DNS responses. The “Delay before use” line in

the figure shows the distribution of the time between a DNS

response and the initiation of the first TCP connection based

on that response. Note, 20.6M DNS resolutions do not trig-

ger subsequent TCP activity and therefore show in the distri-

bution as having infinite delay. We suspect these unused and

delayed-use resolutions indicate DNS prefetching, which is

2We find this to be a general Bro issue not triggered by DNS traffic.
The bad timestamps do not seem to disproportionately impact a
certain kind of DNS transaction and therefore we believe there is
no systematic measurement bias.
3We focus on TCP traffic because less than 0.1% of UDP traffic in
our network uses IP addresses from DNS responses.

common in modern browsers. We find a TCP connection

using a DNS response within 50 msec in 36% of the cases.

Observing that hosts do not immediately use DNS responses

is significant because this indicates there is slack in the pro-

cess which may allow for longer DNS transactions without

impacting the connections that depend on the results.

While we cannot observe the shared resolver’s iterative

resolution process from our vantage point, we need the tim-

ing information about each iterative step to drive our simu-

lations. Therefore, we collect a second dataset by using dig

to iteratively resolve the names from our passive data col-

lection and record the durations of all iterative steps of the

lookup process from a machine within the Case Connection

Zone. We perform each iterative step five times and use the

average transaction time in our simulations.

We lookup the 475K unique domain names in our trace

in two steps. Between November 26 and December 12,

2013 we resolved the 197K names that we find in subse-

quent TCP traffic. Of these, 5K could not be resolved either

due to ADNS server misconfiguration or because the name

no longer existed. The 192K unique names we successfully

resolve account for nearly 99% of the 20.4M used resolu-

tions in our traces. Further, the successful lookups also cover

98% of the over 66M TCP connections that utilize DNS in

our traces. We conduct a second set of active probes for the

unused names on April 10, 2014. This second round of prob-

ing was conducted at much higher rate than the first, which

caused queuing delays and hence we consider the timing in-

formation to be inaccurate. However, we never use the tim-

ing information from these lookups as they represent names

without subsequent TCP connections. Rather, our objective

in this probing is to obtain the time-to-live (TTL) of each

record as this will impact our assessment of load (§ 5). In

total we have probe data for 459K unique domain names,

covering 97% of the resolutions in our trace.

Given these two sets of data, we conduct trace-driven sim-

ulations of end-host resolutions that use the natural traffic

load we observe in our traces, as well as the timing and TTL

information from the active probing to simulate the needed

steps of the iterative process for each lookup. We derive the

following variables from our traces: Ts is the time we ob-

serve a given DNS request that starts a resolution, Tf is the

time we observe the corresponding response that finishes a

resolution and Tc is the time we observe a TCP connection

using the given DNS response to initiate a connection.4 Fur-

ther, when simulating DNS resolutions from the client, we

use the DNS transaction start times from the traces, but the

DNS responses will come back at T ′
f—which depends on

the state of the simulated client’s cache and the timing of

the required iterative DNS transactions. Thus, while in the

traces Ts < Tf < Tc holds, in our simulations, T ′
f can fall

4Given that multiple TCP connections can leverage a single DNS
lookup, Tc is actually a set of values and we perform our compu-
tations on each value. However, for ease of exposition we often
discuss it as a single value.

at any point after Ts. We assume that processing time be-

tween a DNS response and subsequent TCP connection is

minimal. Therefore, when T
′
f <= Tc, our simulated DNS

transaction does not interfere with follow-on TCP activity.

However, when T
′
f > Tc our simulated DNS transaction

actively impedes follow-on TCP activity, which would oth-

erwise be ready to proceed at Tc, but would be forced to wait

until T ′
f to commence.

Finally, during one week of the passive monitoring of the

network we sketch above, we collect TCP SYN/FIN/RST

packet traces (June 11-17, 2012). We use p0f [30] to de-

termine a signature for each TCP connection in our corpus

which contains inferences about the hosts based on operating

system fingerprint, MSS and IP TTL. Since each home in the

network is NAT’ed these signatures allow us to gain some

visibility into per-device activity within the house. While not

perfect—as two like systems will have the same signature—

we find 294 unique signatures across the 100 residences dur-

ing the week of our trace. Unfortunately we cannot finger-

print UDP to then correlate the DNS transactions with spe-

cific TCP connections. We therefore assign DNS transac-

tions the signature of the closest TCP connection that lever-

ages the binding in the DNS response. We consider this the

worst case since it is the soonest the binding will be needed.

4. IMPACT ON PERFORMANCE

We now turn to examining the impact of removing shared

resolvers on TCP connections. Largely the impact manifests

as changes in the duration of the resolution process which is

a prerequisite for TCP connections. As a baseline we plot

the distributions of the difference between the actual (via a

shared resolver) and simulated (directly by clients) resolu-

tion times for each DNS resolution in our 4 month trace in

Figure 3. A positive value indicates that the simulated reso-

lution took longer than the natural duration (i.e., T ′
f > Tf).

The simulated direct client resolutions take less time for 19%

of the resolutions, roughly the same amount of time in 26%

of resolutions, and more time in 55% of resolutions. The

figure shows that direct client resolution adds no more than

50 msec to the resolution process in 84% of the cases.

Also, relying on client resolution can impose delay on a

TCP connection only if the DNS response comes after TCP

is otherwise ready to begin (i.e., T ′
f > Tc). First, 39% of the

108M TCP connections in our trace do not require a DNS

lookup—making DNS changes moot.

Next, we concentrate on the 61% of TCP connections that

do utilize DNS responses. These connections pose a prob-

lem because they may come from multiple devices within a

residence. Since we cannot distinguish between the devices

in our full 4 month dataset we conflate multiple devices’

caches together. To cope with our suboptimal vantage point

we first derive bounds for the impact experienced by these

connections. Recall that the impact from the removal of a

shared DNS resolver is ameliorated by two factors: (i) the

delayed use of DNS resolutions and (ii) device-level DNS

Figure 1: Monitoring vantage point

1us 1ms 10ms 100ms 1s 10s
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (log scale)

C
D

F

DNS resolution time
Wait before use in TCP

Figure 2: Dist. of DNS trans. time

and time between DNS response and

TCP connection.

−100 −75 −50 −25 0 25 50 75 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Difference in resolution time (milliseconds)

C
D

F

Figure 3: Dist. of diff. between simu-

lated client resolution and resolution

in the trace with a shared resolver.

caches. We first assume an optimistic case where all traf-

fic within the residence involves a single device with a sin-

gle cache. The distribution of the added delay imposed on

the TCP connections is shown in the “Unified home caches”

line on Figure 4. In this simulation, only 12% of TCP con-

nections using DNS experience an added delay under direct

client resolution, and 4% experience 50 ms or more of de-

lay. Second, we assume no client DNS caching at all and

present the distribution of added time for each TCP connec-

tion requiring a DNS lookup on the “No cache” line. The

line shows that nearly 60% of TCP connections using DNS

are not impacted because their DNS resolutions complete

before the use despite any added delay direct client lookup

may impose. Taking Figure 4 together with our finding that

39% of TCP connections do not rely on DNS, indicates that

75–93% of all TCP connections will feel no impact from di-

rect client DNS resolution.

While these bounds show the impact of direct client

lookup is modest at most, we aim to more accurately deter-

mine where the performance may fall. We leverage the p0f

signatures that annotate one week of our data (see § 3) to de-

velop a refined—even if not fully accurate—view of device-

level caches and re-run our simulation for the given week.

The distribution of the amount of time direct client lookup

adds to TCP connections is given by the “p0f caches” line on

Figure 4. The results are similar to those under the assump-

tion of one unified cache for the entire house, which shows

that reality is likely closer to the lower-cost bound.

5. IMPACT ON SCALABILITY

In addition to performance issues, our proposal for elim-

inating shared resolvers also has potential scalability issues.

By caching records, shared resolvers shield authoritative

servers from the full workload imposed by clients. Further,

by performing iterative lookups on clients’ behalf, the re-

solvers relieve the end hosts from the need to perform these

steps. However, under our proposal we force each client

to individually consult the authoritative infrastructure and

hence we increase the work for the network, the clients and

the authoritative servers.

1ms 10ms 100ms 1s
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay imposed (log scale)
C

D
F

Unified home caches
p0f caches
No cache

Figure 4: Delay added by client resolution to the TCP

connections that require DNS.

In terms of network load, we find DNS to be less than

0.1% of the total traffic volume regardless of whether clients

rely on a shared resolver or directly resolve names them-

selves. This indicates that network load is not a concern re-

gardless of approach taken. Next we divide our four month

dataset into ten seconds bins for each host within the net-

work and record the number of DNS lookups for each bin.

With a shared resolver, we find the per bin average, 99.9

percentile and peak to be 0.267, 80, and 438 transactions,

respectively. With direct client resolutions, these numbers

increase by 12%, 20% and 53%, respectively, but the ab-

solute levels remain manageable—e.g. the 99.9 percentile

remains under 100 transactions, or 10 transactions per sec-

ond. We therefore conclude that neither network nor client

load present a barrier to our approach.

We next assess the load increase on the authoritative in-

frastructure. We simulate both shared resolver and direct

client resolution behavior using the workload in our trace.

We use relative change in load as an approximation of the

global load increase for authoritative domains. First, we find

that roughly 93% of the authoritative domains do not experi-

ence an increase in the average load (over our ten second

windows) while over 99% of authoritative domains show

no increase in the peak load. This is due to sparse use of

these domains—across both device and time—and therefore

Simulation Load (DNS transactions / 10 secs)

Average 99.9th Peak

Shared resolver 0.54 17 127
Client resolution 1.84 36 145

1 week TTL 1.15 28 131
2 week TTL 0.89 25 131
3 week TTL 0.77 23 131

2 questions 0.87 33 135
10 questions 0.64 29 135

1 wk / 2 ques 0.72 31 135
3 wk / 10 ques 0.55 28 135

5-day per-p0f signature caches

Shared resolver 0.32 4 30
Client resolution 1.60 14 62

Table 1: Load on the “.com” TLD.

low likelihood of benefiting from a shared cache. How-

ever, the domains that do experience an increase in load are

already popular domains, which we may exacerbate. The

“google.com” second-level domain (SLD) and the “.com”

top-level domain (TLD) are the most popular domains in

our trace and would experience average load increases of 2.6

and 3.4 times, respectively, without shared resolvers. Given

the popularity of these zones we may have expected an in-

crease on the order of the number of houses we monitor.

The increases are two orders of magnitude less, indicating

that clients’ caches are crucial to dampening demand.

In addition, we note that whether or not to use a shared

resolver is a decision made by clients and edge networks

and not the authoritative domains. Clients could organically

choose to directly contact ADNS servers without involving

a shared resolver. Thus, ADNS servers cannot avoid dealing

with the additional load such decisions would yield.5 We are

not interested in setting up a situation where clients and do-

mains are at odds and therefore next investigate two ways to

mitigate the additional load stemming from client resolution.

Domains like “google.com” can directly manage the load

increase by dynamically tuning the TTL of their records to

trade load for flexibility. However, the TLDs have less flex-

ibility over the TTL of their records given that these records

affect another party (their client SLDs). We thus focus on the

“.com” TLD, which is the most popular TLD with 54% of

all transactions across all TLDs in our dataset. The first two

rows of Table 1 provide a baseline for the average, 99.9th

percentile, and peak load that the “.com” TLD experiences

per ten second bin when using a shared resolver and client

resolution. With client resolution, the load increases by fac-

tors of 3.4, 2.1 and 1.1 at the average, 99.9th percentile

and peak, respectively. Below we consider two load miti-

gation techniques: (i) a static increase in the records’ TTL

by ADNS servers and (ii) opportunistic use of extra DNS

questions by the clients.

5While domains could take steps to incentivize use of shared re-
solvers through various load management techniques (e.g., prefer-
entially dropping incoming requests not from a known shared re-
solver), these techniques would make accessing the domains more
brittle and run contrary to the goal of most domain operators to
make their domains as accessible as possible.

Increase TTLs: The first way for domains to shed load is to

increase TTLs such that clients cache their records longer.

This has been previously proposed as a way to improve

availability of SLD mappings [20]. The cost of increas-

ing the TTL is reduced flexibility in changing the name-to-

address bindings. To see the significance of this issue, we ac-

tively request all SLD delegation records from all TLDs we

observe in our traces and find 82% have TTLs of two days.

Furthermore, more than 99% of resolutions in our traces are

for records under SLDs that have TTLs of two days. At the

same time, we find that SLD delegations do not change of-

ten. We actively resolve these records every day for 67 days

and find that an average of 1.1% change within one week

with linear growth over longer time periods (e.g., 2.3% and

3.4% change after two and three weeks, respectively).

To understand how increasing TTLs would impact the

load on the TLD servers we vary the TTL of the “.com” dele-

gation records in our simulation. The second group of results

in Table 1 shows the impact of TTLs from 1–3 weeks. As ex-

pected, the load drops as the TTL increases. Still, while the

peak load falls to within 3% of the peak load when using a

shared resolver, the average load is twice the current load for

the one-week TTL and 43% more for the three-week TTL.

While we find that over 96% of these records do not change

within three weeks, we believe it is unlikely that the com-

munity will deem a TTL of three weeks practical due to the

lack of flexibility when changes are in fact needed.

Multiple DNS Questions: A second method to reduce the

load on authoritative servers is for clients to piggyback DNS

prefetching questions on naturally occurring lookups. In cur-

rent usage, all DNS transactions involve asking one ques-

tion. However, the DNS protocol supports multiple ques-

tions per request. By opportunistically appending questions

for SLD records that the client is likely to use, the client can

populate its cache and avoid a later specific query for the pig-

gybacked record. For instance, if the client suffers a cache

miss for the “google.com” delegation record and also notices

that its cached copy of “amazon.com” will expire soon, the

client could ask for both records in a single request (which

is required anyway). This technique could potentially re-

duce the number of DNS transactions arriving at the TLDs,

but not the total number of questions.6

To explore opportunistic prefetching of DNS records we

simulate clients that track client accesses for each SLD. For

each DNS resolution, we increment a counter for the corre-

sponding SLD and at the end of each day all counters are

halved (to decay historical popularity).7 When making a

necessary DNS request to a TLD, the client adds questions

to the request for the most popular SLD delegation records

6In fact, the total number of questions could increase, as well, since
clients may opportunistically request records that are never subse-
quently used.
7This is a simple algorithm that could be refined in many ways but
suffices to get an initial understanding of the efficacy of the general
technique.

that are either not in the cache or are close to expiring. We

explore requests with 2–10 questions in our simulations.8

The third group of results in Table 1 shows the load client

resolution places on the “.com” TLD server with 2 and

10 questions per DNS transaction. Including a second ques-

tion in each request decreases the average load to less than

half that of as-needed client resolution. The savings at the

99.9
th percentile and peak are more modest at 9% and 7%,

respectively. Increasing the number of questions to 10 cuts

the load of direct resolutions by almost two-third and yields

the average load within 20% of using a shared resolver.

One issue with prefetching is that—unlike everything else

we propose—leveraging multiple questions per DNS trans-

action will require changes to authoritative servers. While

posing multiple questions is consistent with the DNS proto-

col and hence no specification changes are needed, we find

that authoritative servers generally ignore all but the first

question in a request. Further, answering multiple ques-

tions per DNS request naturally will increase the process-

ing cost of completely answering the request. An attacker

could leverage this feature to coax a busy TLD server be-

coming even busier—and ultimately overloading the server

to the point of impacting normal requests. TLD servers

can mitigate this in a number of ways, including prioritiz-

ing resources to clients making only a small number of re-

quests [28] and declining to answer multiple questions per

query when the load is high.

Combining Methods: Finally, the two mitigations we in-

vestigate above are not mutually exclusive and therefore we

next study the efficacy of both extending the TTL and op-

portunistically prefetching delegation records, as we show

in the fourth group of results in Table 1. The first combi-

nation involves setting the TTL to one week and using two

questions per DNS request. In this case we increase the aver-

age load by one-third, the 99.9th percentile load by 82% and

the peak load by 6% compared with using a shared cache.

On the other end of our parameter space, a three-week TTL

with ten questions per transaction produces an average load

that is nearly the same as the load with a shared resolver.

However, the 99.9
th percentile and peak load show a 65%

and 6% increase, respectively. Note that extra questions can

actually increase peak rates due to changing the timing of

the query flow and sending unnecessary requests.

The above analysis assumes a per-house DNS cache as

our long-term data does not provide device-level visibility.

We now turn to our p0f-augmented dataset to gain an initial

understanding of load when residences are more appropri-

ately divided. Since 99% of SLD records have TTLs of two

days, we simulate only the last five days of the week-long

dataset—leaving the first two days to warm the cache.9 The

8Answers for 10 questions generally fit within a 1500B packet.
9We could neglect cache warming in the previous section because
(i) the DNS queries are dominated by resolutions of names below
SLDs while now we are focusing on the SLD queries and (ii) the
longevity of the data makes any warm up period insignificant.

last two lines in Table 1 show the load increases when we

simulate with the p0f signatures. We find increase factors

of 5, 3.5, and 2.1 respectively due to direct client resolution.

While this trace is too short to evaluate our mitigation tech-

niques, one could expect similar relative effect to our results

with per-house caches.

6. ADDITIONAL CONSIDERATIONS

We now discuss two additional calculations which we

cannot directly quantify, but are part of the tradeoff of elid-

ing shared resolution infrastructure.

Privacy Concerns: Direct client resolution can reduce

users’ privacy. When using a shared resolver, clients gain a

measure of anonymity as outside their edge network lookups

cannot be directly attributed to a specific client. Therefore, a

downside to removing the shared resolver is the loss of this

measure of privacy. This may be viewed by some users as

too revealing to eavesdroppers or simply ADNS servers that

log individuals’ activities. On the other hand, as we discuss

in § 1 and § 2 the ability to directly locate clients is useful for

CDNs. As a comment on this tussle we note that many users

are willing to use open shared resolvers (e.g., Google DNS)

and are therefore comfortable with directly attributable DNS

requests arriving at a large third-party network.

Policy Issues: Additionally, shared resolvers also allow net-

work operators to implement edge network policy (e.g., not

allowing resolution of some site a company does not wish

employees to use while working). Using our approach of di-

rect client resolution removes the DNS resolver as a control

point in the network. However, our proposal does not pre-

clude the use of a shared resolver in such cases. We simply

view this as akin to web downloads where the expectation

is that clients and web servers directly communicate, but in

some cases a proxy is placed in the path to implement policy.

7. CONCLUSION

Traditionally, our community’s response to security prob-

lems is to harden a protocol or its implementation. In this

paper we take an alternate approach to DNS security, sug-

gesting a different factorization of the work that eliminates

shared DNS resolvers. The benefit of this approach is to re-

duce DNS’ attack surface. Through an initial study of a sin-

gle network, we show that while there are costs, those costs

are modest and manageable. For instance, less than 10%

of TCP connections will be delayed by direct client resolu-

tion. Further, the 99.9
th percentile load does not increase

at all for 90% of the ADNS servers and by a factor of two

at the .com TLD server–with no effort to mitigate the addi-

tional load. There are policy and privacy concerns, as well,

but we believe this initial investigation shows that leaning on

clients to do their own lookups deserves serious considera-

tion. Further, we believe this effort illustrates that revisiting

the fundamental way we arrange networks in the context of

modern network realities may well be useful across other

components of the system, as well.

8. REFERENCES

[1] Case Connection Zone.

http://www.caseconnectionzone.org/.

[2] Open Resolver Project.

http://openresolverproject.org/.

[3] The Bro Network Security Monitor.

https://www.bro.org/.

[4] H. A. Alzoubi, M. Rabinovich, and O. Spatscheck.

The Anatomy of LDNS Clusters: Findings and

Implications for Web Content Delivery. In

International Conference on World Wide Web, 2013.

[5] M. Antonakakis, D. Dagon, X. Luo, R. Perdisci,

W. Lee, and J. Bellmor. A Centralized Monitoring

Infrastructure for Improving DNS Security. In Recent

Advances in Intrusion Detection, 2010.

[6] R. Arends, R. Austein, M. Larson, D. Massey, and

S. Rose. DNS Security Introduction and

Requirements. RFC 4033, 2005.

[7] S. Ariyapperuma and C. Mitchell. Security

Vulnerabilities in DNS and DNSSEC. In IEEE

International Conference on Availability, Reliability

and Security, 2007.

[8] D. Bernstein. Introduction to DNSCurve.

http://dnscurve.org/, 2008.

[9] C. Contavalli, W. van der Gaast, S. Leach, and

D. Rodden. Client IP Information in DNS Requests.

IETF draft, work in progress, 2010.

[10] D. Dagon, M. Antonakakis, K. Day, X. Luo, C. Lee,

and W. Lee. Recursive dns architectures and

vulnerability implications. In Network and Distributed

System Security Symposium, 2009.

[11] K. Fujiwara. Number of Possible DNSSEC Validators

Seen at jp. In DNS-OARC Workshop, 2012.

[12] A. Gerber and R. Doverspike. Traffic Types and

Growth in Backbone Networks. In Optical Fiber

Communication Conference, 2011.

[13] O. Gudmundsson and S. Crocker. Observing DNSSEC

Validation in the Wild. InWorkshop on Securing and

Trusting Internet Names, 2011.

[14] A. Herzberg and H. Shulman. Fragmentation

Considered Poisonous, or:

One-domain-to-rule-them-all.org. In IEEE

Communications and Network Security, 2013.

[15] C. Huang, I. Batanov, and J. Li. A Practical Solution

to the Client-LDNS Mismatch Problem. ACM

SIGCOMM Computer Communication Review, 42(2),

2012.

[16] C. Huang, D. A. Maltz, J. Li, and A. Greenberg.

Public DNS system and Global Traffic Management.

In IEEE International Conference on Computer

Communications, 2011.

[17] D. Kaminsky. Black Ops 2008: It’s the End of the

Cache As We Know It. Black Hat USA, 2008.

[18] Z. M. Mao, C. D. Cranor, F. Douglis, M. Rabinovich,

O. Spatscheck, and J. Wang. A Precise and Efficient

Evaluation of the Proximity Between Web Clients and

Their Local DNS Servers. In USENIX Annual

Technical Conference, General Track, 2002.

[19] J. S. Otto, M. A. Sánchez, J. P. Rula, and F. E.

Bustamante. Content Delivery and the Natural

Evolution of DNS: Remote DNS Trends, Performance

Issues and Alternative Solutions. In ACM Internet

Measurement Conference, 2012.

[20] V. Pappas and E. Osterweil. Improving DNS service

availability by using long TTL values. IETF Draft.

http://tools.ietf.org/id/draft-pappas-dnsop-long-ttl-

04.txt,

2012.

[21] H. Qian, E. Miller, W. Zhang, M. Rabinovich, and

C. E. Wills. Agility in Virtualized Utility Computing.

In IEEE Workshop on Virtualization Technology in

Distributed Computing, 2007.

[22] M. Sargent, B. Stack, T. Dooner, and M. Allman. A

First Look at 1 Gbps Fiber-To-The-Home Traffic

(TR-12-009). Technical report, 2012.

[23] K. Schomp, T. Callahan, M. Rabinovich, and

M. Allman. On Measuring the Client-Side DNS

Infrastructure. In ACM Internet Measurement

Conference, 2013.

[24] K. Schomp, T. Callahan, M. Rabinovich, and

M. Allman. Assessing DNS Vulnerability to Record

Injection. In Passive and Active Measurement

Conference, 2014.

[25] C. Schuba. Addressing Weaknesses in the Domain

Name System Protocol. PhD thesis, Purdue University,

1993.

[26] A. Shaikh, R. Tewari, and M. Agrawal. On the

Effectiveness of DNS-based Server Selection. In IEEE

International Conference on Computer

Communications, 2001.

[27] S. Tzur-David, K. Lashchiver, D. Dolev, and T. Anker.

Delay Fast Packets (DFP): Prevention of DNS Cache

Poisoning. Security and Privacy in Communication

Networks, 2012.

[28] P. Vixie and V. Schryver. DNS Response Rate

Limiting (DNS RRL). Technical Report

ISC-TN-2012-1, Internet Systems Consortium, Apr.

2012.

[29] L. Yuan, K. Kant, P. Mohapatra, and C. Chuah. DoX:

A Peer-to-Peer Antidote for DNS Cache Poisoning

Attacks. In IEEE International Conference on

Communications, 2006.

[30] M. Zalewski. p0f: Passive OS Fingerprinting tool.

http://lcamtuf.coredump.cx/p0f.shtml.

